「postOI」Cross Swapping
题意
给出一个 \(n\times n\) 的矩阵 \(A\),你可以进行下述操作任意多次:指定整数 \(k\)(\(1\le k\le n\)),使 \(A_{ni}\) 与 \(A_{in}\) 交换。
求你能得到的字典序最小的矩阵大小。
\(n\le 1000\)
解析
不难发现操作是可逆的,并且操作的顺序并不影响结果。那么我们只需要决定要对哪些 \(k\) 进行操作。不妨定义 bool 变量 \(T_i\),当 \(T_i=\bold{true}\),表示要操作 \(k\),反之不操作 \(k\)。
首先字典序能够想到贪心,即从左往右、从上往下依次使每个位置上的数尽可能小。那么哪些数可能出现在 \((i,j)\)?可以发现任何调换都是关于主对角线反转,于是只可能有 \(A_{ij}\) 和 \(A_{ji}\) 出现在 \((i,j)\)。
那么怎样让 \(A_{ij}\) 最终在 \((i,j)\) ?显然只有 \(k=i\) 或 \(k=j\) 对 \((i,j)\) 有影响,稍微推导可以知道结果是 \(T_i=T_j\)。而让 \(A_{ji}\) 最终在 \((i,j)\) 则要求 \(T_i\neq T_j\)。
那么可以看出这是一个 2-sat 问题。再回到本题的具体解决方法,从上到下从左往右地枚举右上侧的位置(原因即字典序),如果 \(A_{ij}=A_{ji}\),则没有任何限制;如果 \(A_{ij}>A_{ji}\) 则要求 \(T_i\neq T_j\);如果 \(A_{ij}< A_{ji}\) 则要求 \(T_i=T_j\)。
当然可能无法满足要求,说明无法在不影响先前的位置的前提下使当前位置最小,又根据字典序的性质,此时不能满足当前位置最小,否则可以满足。
那怎么判断 2-sat 问题是否有解?Tarjan?那么边数以及进行 Tarjan 的次数都是 \(O(n^2)\),\(O(n^4)\) 显然不能过。只会添加条件?强连通缩点!然而每次添加条件并不会保证强连通数量严格减少,复杂度依然错误。
那么此时需要关注条件形式——相等或不等。那么我们可以这样说,两个变量之间要么没有关联,要么一个变量决定后,另一个变量必然确定。于是延申出下述方案——
把可以确定相等的变量缩点,并且记录与这个变量不等的变量是哪一个。例如现在有两个不相干的变量 \(a,b\)(\(a,b\) 分别代表一个缩点),\(a',b'\) 代表与 \(a,b\) 不等的变量。如果现在确定 \(a\neq b\),则 \(a'=b\),\(b'=a\),可以进一步缩点;如果确定 \(a=b\),则 \(a=b\) 且 \(a'=b'\)。
上面是不相干的变量,如果是相关的变量 \(a,b\),此时要么合法,不会产生新的缩点,要么不合法。例如,如果有要求 \(a=b\),而我们发现 \(a'=b\)(准确的说,\(b\) 在 \(a'\) 这个缩点中),此时就发生了矛盾。
最后,怎么缩点?只缩不拆,并查集。
源代码
#include <cstdio>
#include <cstring>
#include <algorithm>
const int MAXN = 1005;
struct Dsu
{
int fa[MAXN], dif[MAXN];
void clear(const int &siz)
{
for (int i = 1; i <= siz; ++i)
{
fa[i] = i;
dif[i] = -1;
}
}
int findFa(const int &src)
{
return fa[src] == src ? src : fa[src] = findFa(fa[src]);
}
int combine(int src, int dst)
{
src = findFa(src), dst = findFa(dst);
return fa[src] = dst;
}
void linkSame(int ele_a, int ele_b)
{
ele_a = findFa(ele_a), ele_b = findFa(ele_b);
if (ele_a == ele_b) /* useless */
{
return;
}
if (ele_a == dif[ele_b]) /* corrupt */
{
return;
}
int tmp_ele = combine(ele_a, ele_b), tmp_dif = -1;
if ((~dif[ele_a]) && (~dif[ele_b]))
{
tmp_dif = combine(dif[ele_a], dif[ele_b]);
}
else
{
if (~dif[ele_a])
{
tmp_dif = dif[ele_a];
}
if (~dif[ele_b])
{
tmp_dif = dif[ele_b];
}
}
dif[tmp_ele] = tmp_dif;
if (~tmp_dif)
{
dif[tmp_dif] = tmp_ele;
}
}
void linkDiff(int ele_a, int ele_b)
{
ele_a = findFa(ele_a), ele_b = findFa(ele_b);
if (ele_a == dif[ele_b]) /* useless */
{
return;
}
if (ele_a == ele_b) /* corrupt */
{
return;
}
int tmp_ele_a = ele_a, tmp_ele_b = ele_b;
if (~dif[ele_a])
{
tmp_ele_b = combine(tmp_ele_b, dif[ele_a]);
}
if (~dif[ele_b])
{
tmp_ele_a = combine(tmp_ele_a, dif[ele_b]);
}
dif[tmp_ele_a] = tmp_ele_b;
dif[tmp_ele_b] = tmp_ele_a;
}
};
Dsu same_block;
int mat[MAXN][MAXN], rev_tag[MAXN];
void doSwap(const int &siz)
{
same_block.clear(siz);
for (int rol = 1; rol <= siz; ++rol)
{
for (int col = rol + 1; col <= siz; ++col)
{
if (mat[rol][col] != mat[col][rol])
{
if (mat[rol][col] < mat[col][rol])
{
same_block.linkSame(rol, col);
}
else
{
same_block.linkDiff(rol, col);
}
}
}
}
}
void getAnswer(const int &siz)
{
std::fill(rev_tag + 1, rev_tag + 1 + siz, -1);
for (int i = 1; i <= siz; ++i)
{
int rt_i = same_block.findFa(i);
if (rev_tag[rt_i] == -1)
{
rev_tag[rt_i] = 1;
rev_tag[same_block.dif[rt_i]] = 0;
}
}
for (int i = 1; i <= siz; ++i)
{
if (rev_tag[same_block.findFa(i)])
{
for (int j = 1; j <= siz; ++j)
{
std::swap(mat[i][j], mat[j][i]);
}
}
}
}
void solveCase()
{
int siz;
scanf("%d", &siz);
for (int rol = 1; rol <= siz; ++rol)
{
for (int col = 1; col <= siz; ++col)
{
scanf("%d", &mat[rol][col]);
}
}
doSwap(siz);
getAnswer(siz);
for (int rol = 1; rol <= siz; ++rol)
{
for (int col = 1; col < siz; ++col)
{
printf("%d ", mat[rol][col]);
}
printf("%d\n", mat[rol][siz]);
}
}
int main()
{
int cnt_case;
scanf("%d", &cnt_case);
while (cnt_case--)
{
solveCase();
}
return 0;
}
「postOI」Cross Swapping的更多相关文章
- 「SCOI2016」妖怪 解题报告
「SCOI2016」妖怪 玄妙...盲猜一个结论,然后过了,事后一证,然后假了,数据真水 首先要最小化 \[ \max_{i=1}^n (1+k)x_i+(1+\frac{1}{k})y_i \] \ ...
- 「SCOI2015」小凸想跑步 解题报告
「SCOI2015」小凸想跑步 最开始以为和多边形的重心有关,后来发现多边形的重心没啥好玩的性质 实际上你把面积小于的不等式列出来,发现是一次的,那么就可以半平面交了 Code: #include & ...
- 「NOI2014」购票 解题报告
「NOI2014」购票 写完了后发现写的做法是假的...然后居然过了,然后就懒得管正解了. 发现需要维护凸包,动态加点,询问区间,强制在线 可以二进制分组搞,然后你发现在树上需要资瓷撤回,然后暴力撤回 ...
- 「SDOI2014」向量集 解题报告
「SDOI2014」向量集 维护一个向量集合,在线支持以下操作: A x y :加入向量 \((x, y)\): Q x y l r:询问第 \(L\) 个到第 \(R\) 个加入的向量与向量 \(( ...
- LOJ #2205. 「HNOI2014」画框 解题报告
#2205. 「HNOI2014」画框 最小乘积生成树+KM二分图带权匹配 维护一个\((\sum A,\sum B)\)的匹配下凸包,答案在这些点中产生. 具体的,凸包两端可以直接跑单独的\(A\) ...
- [LOJ 2039] 「SHOI2015」激光发生器
[LOJ 2039] 「SHOI2015」激光发生器 链接 链接 题解 分为两个部分 第一个是求直线之间的交点找到第一个触碰到的镜面 第二个是求直线经过镜面反射之后的出射光线 第一个很好做,第二个就是 ...
- 「译」JUnit 5 系列:条件测试
原文地址:http://blog.codefx.org/libraries/junit-5-conditions/ 原文日期:08, May, 2016 译文首发:Linesh 的博客:「译」JUni ...
- 「译」JUnit 5 系列:扩展模型(Extension Model)
原文地址:http://blog.codefx.org/design/architecture/junit-5-extension-model/ 原文日期:11, Apr, 2016 译文首发:Lin ...
- JavaScript OOP 之「创建对象」
工厂模式 工厂模式是软件工程领域一种广为人知的设计模式,这种模式抽象了创建具体对象的过程.工厂模式虽然解决了创建多个相似对象的问题,但却没有解决对象识别的问题. function createPers ...
- 「C++」理解智能指针
维基百科上面对于「智能指针」是这样描述的: 智能指针(英语:Smart pointer)是一种抽象的数据类型.在程序设计中,它通常是经由类型模板(class template)来实做,借由模板(tem ...
随机推荐
- 文献阅读01:由I类HLA转录缺失导致的联合免疫治疗的获得性癌症耐药性
背景 Merkel cell carcinoma:梅克尔细胞癌又名皮肤小梁状癌.原发性皮肤神经内分泌癌.皮肤原发性小细胞癌及皮肤APUD瘤. HLA:MHC基因产物在不同细胞表面表达,通常称之为MHC ...
- 编程哲学之 C# 篇:004——安装 Visual Studio
工欲善其事必先利其器,本章介绍安装Visual Studio这个号称宇宙最强IDE(Integrated Development Environment[集成开发环境]). 安装 Visual Stu ...
- 线程基础知识02-CompletableFuture
1 简介 Futrue可以监视目标线程调用call的情况,当你调用Future的get()方法以获得结果时,调用方的线程就被阻塞,直到目标线程的call方法结束并返回结果. 线程的实现方式有几种方式, ...
- Debug时使用热部署修改代码
今晚Debug的时候,一些语句怎么也不能debug,F8步过以下跳好多行,看起来很烦人.原来是有些行无法进入debug断点. 是因为Debug之前Tomcat已经编译Class文件,当插入注释/修改代 ...
- ubuntu 备份系统
1.安装Systemback: sudo add-apt-repository ppa:nemh/systemback sudo apt-get update sudo apt-get install ...
- flutter系列之:在flutter中使用导航Navigator
目录 简介 flutter中的Navigator Navigator的使用 总结 简介 一个APP如果没有页面跳转那么是没有灵魂的,页面跳转的一个常用说法就是Navigator,flutter作为一个 ...
- TCP/IP 协议(10):TCP 协议一百问
TCP/IP 协议(10):TCP 协议一百问 杨领well 的 TCP/IP 协议专栏 TCP 协议部分一直没有更新,是因为我不确定到底应该怎么来介绍 TCP 协议才能干货满满.最后我决定以 Q&a ...
- 【KAWAKO】iphone13pro开箱流程
目录 全程录像 检查包装盒 检查包装盒内物品 检查各种码 拆封 激活 激活之后 检查屏幕 检查其它功能 贴膜(选) References 全程录像 如果你觉得你所购买的平台 (比如某ABB格式名字的平 ...
- Java 文本检索神器 "正则表达式"
Java 文本检索神器 "正则表达式" 每博一文案 在我们短促而又漫长的一生中,我们在苦苦地寻找人生的幸福,可幸福往往又与我们失之交臂, 当我们为此而耗尽宝贵的.青春年华,皱纹也悄 ...
- Angular UI库
1.angular 使用 bootstrap 安装bootstrap npm install bootstrap --save 安装bootstrap-icons npm i bootstrap-ic ...