Sentinel源码分析-滑动窗口统计原理
滑动窗口技术是Sentinel比较关键的核心技术,主要用于数据统计
通过分析StatisticSlot来慢慢引出这个概念
@Override
public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node, int count,
boolean prioritized, Object... args) throws Throwable {
try {
// Do some checking.
fireEntry(context, resourceWrapper, node, count, prioritized, args);
// Request passed, add thread count and pass count.
node.increaseThreadNum();
node.addPassRequest(count);
......
}
......
从代码中可以看出,在其他Slot通过后,会调用node进行计数,我们来看node.addPassRequest(count);, 由于我们使用的是FlowQpsDemo
@Override
public void addPassRequest(int count) {
super.addPassRequest(count);
this.clusterNode.addPassRequest(count);
}
直接看this.clusterNode.addPassRequest(count); 因为clusterNode是default模式下主要用得统计数据node,而它继承于StatisticsNode,于是调用的是
//StatisticsNode.java
private transient Metric rollingCounterInMinute = new ArrayMetric(60, 60 * 1000, false);
@Override
public void addPassRequest(int count) {
rollingCounterInSecond.addPass(count);
rollingCounterInMinute.addPass(count);
}
两个成员类似,我们看其中之一rollingCounterInMinute.addPass,最终会调用
// ArrayMetric.java
this.data = new BucketLeapArray(sampleCount, intervalInMs);
@Override
public void addPass(int count) {
//核心方法
WindowWrap<MetricBucket> wrap = data.currentWindow();
wrap.value().addPass(count);
}
这里的data 是一个非常核心的成员,主要用于判断将数据放到那个窗口(桶)中,wrap.value().addPass(count)负责将数据写入
这个 BucketLeapArray就实现了滑动窗口
当调用data.currentWindow()寻找当前该写入的windows时,最终会调用以下方法,这个是非常关键的方法
public WindowWrap<T> currentWindow(long timeMillis) {
if (timeMillis < 0) {
return null;
}
//1. 根据当前的诗句计算数组的Index
int idx = calculateTimeIdx(timeMillis);
// Calculate current bucket start time.
//2. 由于是相当于是环形数组,需要计算一下窗口开始时间,用于复用窗口时覆盖用
long windowStart = calculateWindowStart(timeMillis);
/*
* Get bucket item at given time from the array.
*
* (1) Bucket is absent, then just create a new bucket and CAS update to circular array.
* (2) Bucket is up-to-date, then just return the bucket.
* (3) Bucket is deprecated, then reset current bucket and clean all deprecated buckets.
*/
while (true) {
WindowWrap<T> old = array.get(idx);
if (old == null) {
//如果进到这里,说明刚启动不久,还有桶还没创建,新建一个
/*
* B0 B1 B2 NULL B4
* ||_______|_______|_______|_______|_______||___
* 200 400 600 800 1000 1200 timestamp
* ^
* time=888
* bucket is empty, so create new and update
*
* If the old bucket is absent, then we create a new bucket at {@code windowStart},
* then try to update circular array via a CAS operation. Only one thread can
* succeed to update, while other threads yield its time slice.
*/
WindowWrap<T> window = new WindowWrap<T>(windowLengthInMs, windowStart, newEmptyBucket(timeMillis));
if (array.compareAndSet(idx, null, window)) {
// Successfully updated, return the created bucket.
return window;
} else {
// Contention failed, the thread will yield its time slice to wait for bucket available.
Thread.yield();
}
} else if (windowStart == old.windowStart()) {
//进到这里来,说明还在同一个桶的时间区间内(start相同),直接返回
/*
* B0 B1 B2 B3 B4
* ||_______|_______|_______|_______|_______||___
* 200 400 600 800 1000 1200 timestamp
* ^
* time=888
* startTime of Bucket 3: 800, so it's up-to-date
*
* If current {@code windowStart} is equal to the start timestamp of old bucket,
* that means the time is within the bucket, so directly return the bucket.
*/
return old;
} else if (windowStart > old.windowStart()) {
// 进到这里来,说明已经在数据中转了一圈,复用的是旧的窗口,需要重置下旧窗口
/*
* (old)
* B0 B1 B2 NULL B4
* |_______||_______|_______|_______|_______|_______||___
* ... 1200 1400 1600 1800 2000 2200 timestamp
* ^
* time=1676
* startTime of Bucket 2: 400, deprecated, should be reset
*
* If the start timestamp of old bucket is behind provided time, that means
* the bucket is deprecated. We have to reset the bucket to current {@code windowStart}.
* Note that the reset and clean-up operations are hard to be atomic,
* so we need a update lock to guarantee the correctness of bucket update.
*
* The update lock is conditional (tiny scope) and will take effect only when
* bucket is deprecated, so in most cases it won't lead to performance loss.
*/
if (updateLock.tryLock()) {
try {
// Successfully get the update lock, now we reset the bucket.
return resetWindowTo(old, windowStart);
} finally {
updateLock.unlock();
}
} else {
// Contention failed, the thread will yield its time slice to wait for bucket available.
Thread.yield();
}
} else if (windowStart < old.windowStart()) {
// Should not go through here, as the provided time is already behind.
return new WindowWrap<T>(windowLengthInMs, windowStart, newEmptyBucket(timeMillis));
}
}
}
我们的demo是创建了一个有60个桶的BucketLeapArray,就这样一直顺序向后循环使用。
定义桶结构的类为MetricBucket
public class MetricBucket {
private final LongAdder[] counters;
...
public MetricBucket() {
MetricEvent[] events = MetricEvent.values();
this.counters = new LongAdder[events.length];
for (MetricEvent event : events) {
counters[event.ordinal()] = new LongAdder();
}
...
}
public MetricBucket add(MetricEvent event, long n) {
counters[event.ordinal()].add(n);
return this;
}
}
可以看出Bucket就是用线程安全类型LongAdder来进行技术逻辑(比AtomicLong性能好一些)
Sentinel源码分析-滑动窗口统计原理的更多相关文章
- 2. Sentinel源码分析—Sentinel是如何进行流量统计的?
这一篇我还是继续上一篇没有讲完的内容,先上一个例子: private static final int threadCount = 100; public static void main(Strin ...
- 3. Sentinel源码分析— QPS流量控制是如何实现的?
Sentinel源码解析系列: 1.Sentinel源码分析-FlowRuleManager加载规则做了什么? 2. Sentinel源码分析-Sentinel是如何进行流量统计的? 上回我们用基于并 ...
- 4.Sentinel源码分析— Sentinel是如何做到降级的?
各位中秋节快乐啊,我觉得在这个月圆之夜有必要写一篇源码解析,以表示我内心的高兴~ Sentinel源码解析系列: 1.Sentinel源码分析-FlowRuleManager加载规则做了什么? 2. ...
- 5.Sentinel源码分析—Sentinel如何实现自适应限流?
Sentinel源码解析系列: 1.Sentinel源码分析-FlowRuleManager加载规则做了什么? 2. Sentinel源码分析-Sentinel是如何进行流量统计的? 3. Senti ...
- 6.Sentinel源码分析—Sentinel是如何动态加载配置限流的?
Sentinel源码解析系列: 1.Sentinel源码分析-FlowRuleManager加载规则做了什么? 2. Sentinel源码分析-Sentinel是如何进行流量统计的? 3. Senti ...
- 7.Sentinel源码分析—Sentinel是怎么和控制台通信的?
这里会介绍: Sentinel会使用多线程的方式实现一个类Reactor的IO模型 Sentinel会使用心跳检测来观察控制台是否正常 Sentinel源码解析系列: 1.Sentinel源码分析-F ...
- 通俗易懂的阿里Sentinel源码分析:如何向控制台发送心跳包?
源码分析 public class Env { public static final Sph sph = new CtSph(); static { // 在Env类的静态代码块中, // 触发了一 ...
- Sentinel 源码分析- 熔断降级原理分析
直接从Sentinel 源码demo ExceptionRatioCircuitBreakerDemo看起 直接看他的main函数 public static void main(String[] a ...
- ViewPager源码分析——滑动切换页面处理过程
上周客户反馈Contacts快速滑动界面切换tab有明显卡顿,让优化. 自己验证又没发现卡顿现象,但总得给客户一个技术性的回复,于是看了一下ViewPager源码中处理滑动切换tab的过程. View ...
随机推荐
- 02 java包装类型的缓存机制
02 java包装类型的缓存机制 Java 基本数据类型的包装类型的大部分都用到了缓存机制来提升性能. Byte,Short,Integer,Long 这 4 种包装类默认创建了数值 [-128,12 ...
- svn :不能打开文件“/data/svn/repo/format”: 权限不够
解决方法:关闭selinux vi /etc/sysconfig/selinux 将其中的SELINUX=enforcing 改为SELINUX=disabled 即可.
- IDEA项目启动乱码小方块
在看完执行了网上各种文章之后,我发现没有一个适合我的. 最终,终于,在朋友的远程帮助下解决了. 如果你还有这个问题的话,可以试一下这个: 右键项目,打开终端,执行下面这个命令(手动指定一下maven ...
- Could not transfer artifact xxx from/to xxx解决方案
maven中默认的镜像加载是这个 在setting.xml文件中 <mirror> <id>nexus</id> <mirrorOf>*</mir ...
- 018(Phone List)(字典树)
题目:http://ybt.ssoier.cn:8088/problem_show.php?pid=1471 题目思路: 这不就是一个超级明显的字典树嘛 字典树,又称单词查找树,Trie树,是一种树形 ...
- 下载Chrome离线安装包
https://www.google.com/chrome/thankyou.html?standalone=1&platform=mac&installdataindex=defau ...
- 比起网易有数BI,也许这款数据可视化软件更适合你!
有数BI是网易推出的面向企业客户的可视化敏捷BI产品.拥有数据填报和自助式商业智能分析产品,提供网页端和手机端应用,帮助客户快速实现数据填报.多维分析.大数据探索.实时大数据展示和成员分享. 山海鲸可 ...
- CodeQL使用流程
前言 好久没用CodeQL了,看了自己之前写的文章发现竟然没有做过相关记录 然后就不知道怎么用了hhh 使用流程 0x1 生成数据库 我们拿到一套源码,首先需要使用CodeQL生成数据库 执行命令: ...
- Cayley 公式的另一种证明
Cayley 公式的一些广为人知的证法: Prufer 序列 Matrix-Tree 定理 然而我都不会 233,所以下面说一个生成函数角度的证法 . 我们知道 \(n\) 个节点的有标号无根树有 \ ...
- ASP.NET Core 产生连续 Guid
1 前言 1.1 这篇文章面向的读者 本文不会过多解释 Guid 是什么,以及顺序 Guid 的作用,需要读者自行具备: 知道 Guid,并且清楚其作用与优势 清楚 Guid.NetGuid() 产生 ...