使用Google OR-Tools分析过去20年中国金融资产最佳配置组合
前两天,在朋友圈里看到一张截至2022年Q2的金融资产历年收益图如下,图中列举了国内从2005年到2022年近20年主要的金融资产历年收益率,随产生想法分析和验证下面几个问题:
- 过去20年,基于怎样的资产配置才能让收益最大化?
- 如果完全拒绝风险,是否可以理财,收益率会是多少?
- 是否有风险小,收益高的资产配置组合?
- 抛开择时和运气,资产配置的最佳持有时长是多少年?
分析方法
使用工具:Google OR-Tools,OR-Tools是谷歌用于组合优化的软件工具,可以从大量可能的解决方案中找到问题的最佳解决方案。比如本例中,假如2005年初我手上有100元钱,怎么把这100元钱分到不同的金融资产上有太多方案。但基本上只会有一种组合让最终收益最大化,也基本只会有一种组合让每年本金不出现亏损的前提下实现收益尽可能最大化。这些都会借助于这个工具进行分析和验证。
一些计算条件:
- 由于图中的信托和房地产门槛比较高,不适于一般理财者,所以刨除掉。只保留银行理财、货币基金、债卷基金、股票基金、股票等5种金融资产。
- 假定只是2005年初投入100元本金,中间不增加本金,也不减少账户资金。
- 投资组合是固定的,比如银行理财占比x%,股票占比y%等,这个比例会保持不变。每年年初会基于上一年剩余本金进行比例的动态平衡调整,调整的目的是让投资组合依然保持这个比例。
- 无风险是相对于每年年初的剩余资金。举例:2005年初投入100元,那么2005年末剩余资金必须大于等于100元。如果2005年获得了10元收益也就是说2006年年初的账户资金是110元(100元本金+10元收益),那么2006年末剩余资金必须大于等于年初资金110元。
分析结果
最终的分析结果如下图:

具体分析内容请参考文章
代码
//定义单年最大允许亏损比例。(比如:0.2代表单年最大允许亏损比例为20%;1代表无限制;0代表不允许亏损)
float allowableMaximumLossRatio = 1f; //无限制
//float allowableMaximumLossRatio = 0.2f; //单年最大允许亏损比例为20%
//float allowableMaximumLossRatio = 0f; //不允许亏损
//待处理数据,此处全部转换为整数处理
(String year, long[] values)[] data = new[]
{
("2005", new long[]{ 10273, 10236, 10912, 10140, 8848}),
("2006", new long[]{ 10280, 10150, 11494, 22263, 21190}),
("2007", new long[]{ 10360, 10336, 11822, 22833, 26621}),
("2008", new long[]{ 11542, 10356, 10646, 4858, 3708}),
("2009", new long[]{ 10425, 10142, 10504, 17117, 20547}),
("2010", new long[]{ 10392, 10181, 10690, 9972, 9312}),
("2011", new long[]{ 10463, 10355, 9711, 7547, 7759}),
("2012", new long[]{ 10588, 10397, 10622, 10545, 10468}),
("2013", new long[]{ 10482,10395,10061,11013,10544}),
("2014", new long[]{ 10597,10460,11848,12939,15244}),
("2015", new long[]{ 10556,10362,10993,13467,13850}),
("2016", new long[]{ 10471,10261,9965,8969,8709}),
("2017", new long[]{ 10422,10384,10165,11063,10493}),
("2018", new long[]{ 10496,10375,10543,7683,7175}),
("2019", new long[]{ 10446,10266,10422,14109,13302}),
("2020", new long[]{ 10414,10213,10315,14454,12343}),
("2021", new long[]{ 10310, 10228, 10393, 10587, 10917}),
("2022", new long[]{ 10350, 10101, 10090, 8928, 9047}),
};
// 创建CP模型.
CpModel model = new CpModel();
//定义变量:各类资产配置比例
IntVar a = model.NewIntVar(0, 100, "a"); //银行理财
IntVar b = model.NewIntVar(0, 100, "b"); //货币基金
IntVar c = model.NewIntVar(0, 100, "c"); //债卷基金
IntVar d = model.NewIntVar(0, 100, "d"); //股票基金
IntVar e = model.NewIntVar(0, 100, "e"); //股票
//创建约束条件:配置比例总和为100%
model.Add(a + b + c + d + e <= 100);
model.Add(a + b + c + d + e >= 100);
//创建约束条件:限定低风险配置比例
//model.Add(a >= 40);
//model.Add(d + e <= 40);
//定义变量数组:单年年末资金
IntVar[] yearResults = new IntVar[data.Length];
//定义变量数组:单年收益率
IntVar[] yearRatios = new IntVar[data.Length];
for (int i = 0; i<data.Length; i++)
{
var yearItem = data[i];
//定义变量:当前年度收益率
IntVar ratio = model.NewIntVar(0, 100 * 10000 * 3, $"ratio{i}");
model.Add(ratio == a * yearItem.values[0] + b * yearItem.values[1] + c * yearItem.values[2] + d * yearItem.values[3] + e * yearItem.values[4]);
yearRatios[i] = ratio;
//创建约束条件:单年最大允许亏损比例
model.Add(ratio >= Convert.ToInt32(100 * (1 - allowableMaximumLossRatio)) * 10000);
//定义变量:当前年末资金
IntVar resultA = model.NewIntVar(0, 100 * 100 * 10000 * Convert.ToInt64(Math.Pow(3, i+1)), $"resultA{i}");
model.AddMultiplicationEquality(resultA, i==0? model.NewConstant(100) : yearResults[i-1], ratio);
//定义变量:由于原生数据的收益率和配置比例是使用转换后的整数计算的,所以这里使用当前年末资金除以100*10000
IntVar result = model.NewIntVar(0, 100 * Convert.ToInt64(Math.Pow(3, i+1)), $"result{i}");
model.AddDivisionEquality(result, resultA, model.NewConstant(100 * 10000));
yearResults[i] = result;
}
//设定求解目标为最终资金最大
model.Maximize(yearResults[data.Length -1]);
//求解
CpSolver solver = new CpSolver();
CpSolverStatus status = solver.Solve(model);
//输出求解结果
if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
{
Console.WriteLine("银行理财配置比: " + solver.Value(a)+"%");
Console.WriteLine("货币基金配置比: " + solver.Value(b)+"%");
Console.WriteLine("债卷基金配置比: " + solver.Value(c)+"%");
Console.WriteLine("股票基金配置比: " + solver.Value(d)+"%");
Console.WriteLine("股票配置比: " + solver.Value(e)+"%");
for (int i = 0; i<data.Length; i++)
{
Console.WriteLine($"{data[i].year} 年末资金:{solver.Value(yearResults[i])} 收益率:{String.Format("{0:P}", solver.Value(yearRatios[i]) / 1000000.00 - 1)}");
}
Console.WriteLine($"最终资金: {solver.ObjectiveValue}");
Console.WriteLine($"年化收益率: {String.Format("{0:P}", Math.Pow((solver.ObjectiveValue - 100)/100, 1.00/data.Length)-1)}");
}
else
{
Console.WriteLine("求解失败,未找到合适结果.");
}
Console.WriteLine($"求解耗时: {solver.WallTime()}s");
Github地址:代码
使用Google OR-Tools分析过去20年中国金融资产最佳配置组合的更多相关文章
- Google PageSpeed Tools 性能测试分析
今天给大家介绍下一个工具:Google PageSpeed Tools,根据官方的介绍,简单梳理如下: Page Speed Insights能针对移动设备和电脑设备衡量网页的性能.该工具会抓取网址两 ...
- Google performance Tools (gperftools) 使用心得
Google performance Tools (gperftools) 使用心得 gperftools是google开发的一款非常实用的工具集,主要包括:性能优异的malloc free内存分配器 ...
- Google Optimization Tools实现加工车间任务规划【Python版】
上一篇介绍了<使用.NET Core与Google Optimization Tools实现加工车间任务规划>,这次将Google官方文档python实现的版本的完整源码献出来,以满足喜爱 ...
- 使用.NET Core与Google Optimization Tools实现加工车间任务规划
前一篇文章<使用.NET Core与Google Optimization Tools实现员工排班计划Scheduling>算是一种针对内容的规划,而针对时间顺序任务规划,加工车间的工活儿 ...
- Google Optimization Tools实现员工排班计划Scheduling【Python版】
上一篇介绍了<使用.Net Core与Google Optimization Tools实现员工排班计划Scheduling>,这次将Google官方文档python实现的版本的完整源码献 ...
- 使用.NET Core与Google Optimization Tools实现员工排班计划Scheduling
上一篇说完<Google Optimization Tools介绍>,让大家初步了解了Google Optimization Tools是一款约束求解(CP)的高效套件.那么我们用.NET ...
- Google Optimization Tools介绍
Google Optimization Tools(OR-Tools)是一款专门快速而便携地解决组合优化问题的套件.它包含了: 约束编程求解器. 简单而统一的接口,用于多种线性规划和混合整数规划求解, ...
- Android Launcher分析和修改1——Launcher默认界面配置(default_workspace)
最近工作都在修改Launcher,所以打算把分析源码和修改源码的过程记录下来,最近会写一些关于Launcher的分析和修改博文.因为我是修改4.0.3的Launcher,所以后面文章里面的Launch ...
- 外国人专门写了一篇文章,来分析为什么go在中国如此火
外国人专门写了一篇文章,来分析为什么go在中国如此火: <Why is Golang popular in China?> http://herman.asia/why-is-go-pop ...
- mysql 5.7.20解压版安装配置
MySql 5.7.20版本免安装版配置过程 下载地址为: https://dev.mysql.com/downloads/mysql/ 最下面根据自己的操作系统选择合适的型号 下载完以后解压缩到 ...
随机推荐
- (编程语言界的丐帮 C#).NET MD5 HASH 哈希 加密 与JAVA 互通
一.注意要点 1:输入字符串的的编码双方保持统一,如:UTF8: 2:HASH计算输出结果 byte[] 数组转String 时,编码要统一,如:转16进制小写字符串.当然也可以转Base64. 3: ...
- 1_Maven
一. 引言 1.1 项目管理问题 项目中jar包资源越来越多, jar包的管理越来越沉重 1.1.1 繁琐 要为每个项目手动导入所需的jar, 需要搜集全部的jar 1.1.2 复杂 项目中的jar如 ...
- 内存映射IO(MMIO)
端口I/O 介绍: 一种I/O编址方式是端口映射I/O(port-mapped I/O), CPU使用专门的I/O指令对设备进行访问, 并把设备的地址称作端口号. 在执行其中的一条指令时,CPU使用地 ...
- 路由组件构建方案(分库分表)V1
路由组件构建方案V1 实现效果:通过注解实现数据分散到不同库不同表的操作. 实现主要以下几部分: 数据源的配置和加载 数据源的动态切换 切点设置以及数据拦截 数据的插入 涉及的知识点: 分库分表相关概 ...
- 在vue中_this和this的区别
_this只是一个变量名,this代表父函数,如果在子函数还用this,this的指 向就变成子函数了,_this就是用来存储指向的 普通函数中的this表示调用此函数时的对象,箭头函数里面的this ...
- 齐博x1第四季《模块插件的制作》系列21-公共表单器的参数选项(7)
password 密码类型 和text一样,只不过type类型是password,密码类型输入时,显示星号.即Html中的密码框类型 icon 字体图标类型 和列表页一样,把css的字体图标引入到了表 ...
- Oracle数据库的两种授权收费方式介绍!
首发微信公众号:SQL数据库运维 原文链接:https://mp.weixin.qq.com/s?__biz=MzI1NTQyNzg3MQ==&mid=2247485212&idx=1 ...
- 「MySQL高级篇」MySQL索引原理,设计原则
大家好,我是melo,一名大二后台练习生,大年初三,我又来充当反内卷第一人了!!! 专栏引言 MySQL,一个熟悉又陌生的名词,早在学习Javaweb的时候,我们就用到了MySQL数据库,在那个阶段, ...
- SQL生成脚本
右键要生成脚本的数据库 选择task 选择Generate script 选择需要生成脚本的table.view.procedure
- Python 嵌入式打包 (图文)
Python嵌入式打包过程 目录 Python嵌入式打包过程 下载嵌入式包 解压和配置 安装pip和其他依赖 启动项目 python嵌入式打包:将python环境与项目代码打包到同一个文件夹中,在其他 ...