前两天,在朋友圈里看到一张截至2022年Q2的金融资产历年收益图如下,图中列举了国内从2005年到2022年近20年主要的金融资产历年收益率,随产生想法分析和验证下面几个问题:

  • 过去20年,基于怎样的资产配置才能让收益最大化?
  • 如果完全拒绝风险,是否可以理财,收益率会是多少?
  • 是否有风险小,收益高的资产配置组合?
  • 抛开择时和运气,资产配置的最佳持有时长是多少年?

分析方法

使用工具:Google OR-Tools,OR-Tools是谷歌用于组合优化的软件工具,可以从大量可能的解决方案中找到问题的最佳解决方案。比如本例中,假如2005年初我手上有100元钱,怎么把这100元钱分到不同的金融资产上有太多方案。但基本上只会有一种组合让最终收益最大化,也基本只会有一种组合让每年本金不出现亏损的前提下实现收益尽可能最大化。这些都会借助于这个工具进行分析和验证。

一些计算条件:

  • 由于图中的信托和房地产门槛比较高,不适于一般理财者,所以刨除掉。只保留银行理财、货币基金、债卷基金、股票基金、股票等5种金融资产。
  • 假定只是2005年初投入100元本金,中间不增加本金,也不减少账户资金。
  • 投资组合是固定的,比如银行理财占比x%,股票占比y%等,这个比例会保持不变。每年年初会基于上一年剩余本金进行比例的动态平衡调整,调整的目的是让投资组合依然保持这个比例。
  • 无风险是相对于每年年初的剩余资金。举例:2005年初投入100元,那么2005年末剩余资金必须大于等于100元。如果2005年获得了10元收益也就是说2006年年初的账户资金是110元(100元本金+10元收益),那么2006年末剩余资金必须大于等于年初资金110元。

分析结果

最终的分析结果如下图:



具体分析内容请参考文章

代码

//定义单年最大允许亏损比例。(比如:0.2代表单年最大允许亏损比例为20%;1代表无限制;0代表不允许亏损)
float allowableMaximumLossRatio = 1f; //无限制
//float allowableMaximumLossRatio = 0.2f; //单年最大允许亏损比例为20%
//float allowableMaximumLossRatio = 0f; //不允许亏损 //待处理数据,此处全部转换为整数处理
(String year, long[] values)[] data = new[]
{
("2005", new long[]{ 10273, 10236, 10912, 10140, 8848}),
("2006", new long[]{ 10280, 10150, 11494, 22263, 21190}),
("2007", new long[]{ 10360, 10336, 11822, 22833, 26621}),
("2008", new long[]{ 11542, 10356, 10646, 4858, 3708}),
("2009", new long[]{ 10425, 10142, 10504, 17117, 20547}),
("2010", new long[]{ 10392, 10181, 10690, 9972, 9312}),
("2011", new long[]{ 10463, 10355, 9711, 7547, 7759}),
("2012", new long[]{ 10588, 10397, 10622, 10545, 10468}),
("2013", new long[]{ 10482,10395,10061,11013,10544}),
("2014", new long[]{ 10597,10460,11848,12939,15244}),
("2015", new long[]{ 10556,10362,10993,13467,13850}),
("2016", new long[]{ 10471,10261,9965,8969,8709}),
("2017", new long[]{ 10422,10384,10165,11063,10493}),
("2018", new long[]{ 10496,10375,10543,7683,7175}),
("2019", new long[]{ 10446,10266,10422,14109,13302}),
("2020", new long[]{ 10414,10213,10315,14454,12343}),
("2021", new long[]{ 10310, 10228, 10393, 10587, 10917}),
("2022", new long[]{ 10350, 10101, 10090, 8928, 9047}),
}; // 创建CP模型.
CpModel model = new CpModel(); //定义变量:各类资产配置比例
IntVar a = model.NewIntVar(0, 100, "a"); //银行理财
IntVar b = model.NewIntVar(0, 100, "b"); //货币基金
IntVar c = model.NewIntVar(0, 100, "c"); //债卷基金
IntVar d = model.NewIntVar(0, 100, "d"); //股票基金
IntVar e = model.NewIntVar(0, 100, "e"); //股票 //创建约束条件:配置比例总和为100%
model.Add(a + b + c + d + e <= 100);
model.Add(a + b + c + d + e >= 100); //创建约束条件:限定低风险配置比例
//model.Add(a >= 40);
//model.Add(d + e <= 40); //定义变量数组:单年年末资金
IntVar[] yearResults = new IntVar[data.Length];
//定义变量数组:单年收益率
IntVar[] yearRatios = new IntVar[data.Length]; for (int i = 0; i<data.Length; i++)
{
var yearItem = data[i]; //定义变量:当前年度收益率
IntVar ratio = model.NewIntVar(0, 100 * 10000 * 3, $"ratio{i}");
model.Add(ratio == a * yearItem.values[0] + b * yearItem.values[1] + c * yearItem.values[2] + d * yearItem.values[3] + e * yearItem.values[4]);
yearRatios[i] = ratio; //创建约束条件:单年最大允许亏损比例
model.Add(ratio >= Convert.ToInt32(100 * (1 - allowableMaximumLossRatio)) * 10000); //定义变量:当前年末资金
IntVar resultA = model.NewIntVar(0, 100 * 100 * 10000 * Convert.ToInt64(Math.Pow(3, i+1)), $"resultA{i}");
model.AddMultiplicationEquality(resultA, i==0? model.NewConstant(100) : yearResults[i-1], ratio); //定义变量:由于原生数据的收益率和配置比例是使用转换后的整数计算的,所以这里使用当前年末资金除以100*10000
IntVar result = model.NewIntVar(0, 100 * Convert.ToInt64(Math.Pow(3, i+1)), $"result{i}");
model.AddDivisionEquality(result, resultA, model.NewConstant(100 * 10000));
yearResults[i] = result;
} //设定求解目标为最终资金最大
model.Maximize(yearResults[data.Length -1]); //求解
CpSolver solver = new CpSolver();
CpSolverStatus status = solver.Solve(model); //输出求解结果
if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
{
Console.WriteLine("银行理财配置比: " + solver.Value(a)+"%");
Console.WriteLine("货币基金配置比: " + solver.Value(b)+"%");
Console.WriteLine("债卷基金配置比: " + solver.Value(c)+"%");
Console.WriteLine("股票基金配置比: " + solver.Value(d)+"%");
Console.WriteLine("股票配置比: " + solver.Value(e)+"%"); for (int i = 0; i<data.Length; i++)
{
Console.WriteLine($"{data[i].year} 年末资金:{solver.Value(yearResults[i])} 收益率:{String.Format("{0:P}", solver.Value(yearRatios[i]) / 1000000.00 - 1)}");
} Console.WriteLine($"最终资金: {solver.ObjectiveValue}");
Console.WriteLine($"年化收益率: {String.Format("{0:P}", Math.Pow((solver.ObjectiveValue - 100)/100, 1.00/data.Length)-1)}");
}
else
{
Console.WriteLine("求解失败,未找到合适结果.");
} Console.WriteLine($"求解耗时: {solver.WallTime()}s");

Github地址:代码

使用Google OR-Tools分析过去20年中国金融资产最佳配置组合的更多相关文章

  1. Google PageSpeed Tools 性能测试分析

    今天给大家介绍下一个工具:Google PageSpeed Tools,根据官方的介绍,简单梳理如下: Page Speed Insights能针对移动设备和电脑设备衡量网页的性能.该工具会抓取网址两 ...

  2. Google performance Tools (gperftools) 使用心得

    Google performance Tools (gperftools) 使用心得 gperftools是google开发的一款非常实用的工具集,主要包括:性能优异的malloc free内存分配器 ...

  3. Google Optimization Tools实现加工车间任务规划【Python版】

    上一篇介绍了<使用.NET Core与Google Optimization Tools实现加工车间任务规划>,这次将Google官方文档python实现的版本的完整源码献出来,以满足喜爱 ...

  4. 使用.NET Core与Google Optimization Tools实现加工车间任务规划

    前一篇文章<使用.NET Core与Google Optimization Tools实现员工排班计划Scheduling>算是一种针对内容的规划,而针对时间顺序任务规划,加工车间的工活儿 ...

  5. Google Optimization Tools实现员工排班计划Scheduling【Python版】

    上一篇介绍了<使用.Net Core与Google Optimization Tools实现员工排班计划Scheduling>,这次将Google官方文档python实现的版本的完整源码献 ...

  6. 使用.NET Core与Google Optimization Tools实现员工排班计划Scheduling

    上一篇说完<Google Optimization Tools介绍>,让大家初步了解了Google Optimization Tools是一款约束求解(CP)的高效套件.那么我们用.NET ...

  7. Google Optimization Tools介绍

    Google Optimization Tools(OR-Tools)是一款专门快速而便携地解决组合优化问题的套件.它包含了: 约束编程求解器. 简单而统一的接口,用于多种线性规划和混合整数规划求解, ...

  8. Android Launcher分析和修改1——Launcher默认界面配置(default_workspace)

    最近工作都在修改Launcher,所以打算把分析源码和修改源码的过程记录下来,最近会写一些关于Launcher的分析和修改博文.因为我是修改4.0.3的Launcher,所以后面文章里面的Launch ...

  9. 外国人专门写了一篇文章,来分析为什么go在中国如此火

    外国人专门写了一篇文章,来分析为什么go在中国如此火: <Why is Golang popular in China?> http://herman.asia/why-is-go-pop ...

  10. mysql 5.7.20解压版安装配置

    MySql 5.7.20版本免安装版配置过程   下载地址为: https://dev.mysql.com/downloads/mysql/ 最下面根据自己的操作系统选择合适的型号 下载完以后解压缩到 ...

随机推荐

  1. python-数据描述与分析(1)

    数据描述与分析 在进行数据分析之前,我们需要做的事情是对数据有初步的了解,这个了解就涉及对行业的了解和对数据本身的敏感程度,通俗来说就是对数据的分布有大概的理解,此时我们需要工具进行数据的描述,观测数 ...

  2. 支付宝沙箱服务 (结合springboot实现,这里对接的是easy版本,工具用的是IDEA,WebStrom)

    一:打开支付宝开发平台,登录,然后点击控制台 https://open.alipay.com/ 二:滚动到底部,选着沙箱服务 三:获取到对接要用的appId和公钥私钥 四:打开IDEA导入所需的xml ...

  3. 图片 css剪切,等比例缩放

    object-fit: cover; .img1 {//自定义图片宽高,并且等比例缩放 width: 200px; height: 400px; object-fit: cover; }

  4. PHP全栈开发(五):PHP学习(2. echo 和 print 输出、数组、foreach循环、字符串)

    在PHP中有两个基本的输出语句,就是echo 和 print 这两个东东有什么不同呢. echo 可以一次输出一个或者多个字符: echo "这是一个", "字符串,&q ...

  5. python基础--简单数据类型预览

    为了适应更多的使用场景,将数据划分为多种类型,每种类型都有各自的特点和使用场景, 帮助计算机高效的处理和展示数据.(比如数字用于数学运算.字符串用于信息传递.页面文字展示等) 1.数字类型   整型 ...

  6. mysql 过程和函数语法学习笔记

    CREATE DEFINER=`root`@`%` PROCEDURE `test`(`num` int) BEGIN /*定义变量*/ DECLARE sex TINYINT(2) DEFAULT ...

  7. TomCat之负载均衡

    TomCat之负载均衡 本文讲述了tomcat当nginx负载均衡服务器配置步骤 以下是Tomcat负载均衡配置信息 1.修改nginx的nginx.conf文件 添加如下属性:localhost是名 ...

  8. abstract关键字的使用

    1.abstract:抽象的 2.abstract可以用来修饰的结构:类.方法 3.abstract修饰类:抽象类 此类不能实例化 抽象类中一定有构造器,便于子类实例化时调用(涉及:子类对象实例化的全 ...

  9. windows设置开机启动程序

    1.新建文件,填写路径 @echo off cd F:\程序路径\ //后面填写3D所在的路径 F: //程序的个盘符 run.bat 把这个文件填写完成后,改个名字,后缀改为bat,并把这个文件放在 ...

  10. 参考Dubbo3官方文档做的学习笔记

    文章目录 概念与架构 2.1 服务发现 Dubbo3官方文档: https://dubbo.apache.org 服务:是 Dubbo 中的核心概念,一个服务代表一组 RPC 方法的集合,服务是面向用 ...