Codeforces 1503C Travelling Salesman Problem(Dynamic Programming)
题意
大家都是优秀生,这点英文还是看得懂的:点此看题
题解
由于旅行路线成一个环,所以从哪里出发不重要,我们把景点按照
a
i
a_i
ai 排序,不妨就从左边最小的出发。基础的旅行费用
c
i
c_i
ci 是都要算上的,我们的目的是最小化额外的费用
∑
max
(
0
,
(
a
j
−
a
i
)
−
c
j
)
\sum\max(0,(a_j-a_i)-c_j)
∑max(0,(aj−ai)−cj) 。
很明显有一部分的景点是回程(从大到小飞回起点)的时候经过的,这些景点一定没有额外费用。其它景点是来路经过的,费用取决于相邻两个的“间距”(
a
a
a 的差)。最左端和最右端都在来路上。
我们不妨用
d
p
[
i
]
dp[i]
dp[i] 表示来路上经过
i
i
i 时,最小的额外花费是多少。那么假设从
i
i
i 往左数,直到
k
k
k 以内的前驱,到
i
i
i 的额外花费都是 0(这个 k 可以预处理出来),则转移为:
d
p
[
i
]
=
min
{
min
j
=
k
i
−
1
d
p
[
j
]
,
a
i
+
(
min
j
=
1
k
−
1
(
d
p
[
j
]
−
a
j
)
)
−
c
i
}
dp[i]=\min\bigg\{\min_{j=k}^{i-1} dp[j]~,~a_i+\big(\min_{j=1}^{k-1} (dp[j]-a_j)\big)-c_i\bigg\}
dp[i]=min{j=kmini−1dp[j] , ai+(j=1mink−1(dp[j]−aj))−ci}
可以分别建立两棵线段树来优化
D
P
\rm DP
DP 。时间复杂度
Θ
(
n
log
n
)
\Theta(n\log n)
Θ(nlogn) 。
CODE
和上面说的不同,这个是从右到左算的。
#include<set>
#include<queue>
#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 200005
#define ENDL putchar('\n')
#define LL long long
#define DB double
#define lowbit(x) ((-x) & (x))
LL read() {
LL f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s=='-')f = -f;s = getchar();}
while(s >= '0' && s <= '9') {x=x*10+(s-'0');s = getchar();}
return f * x;
}
int n,m,i,j,s,o,k;
struct it{
int a,c,id;
}p[MAXN];
LL dp[MAXN];
bool cmp(it x,it y) {
if(x.a != y.a) return x.a < y.a;
if(x.id == 1) return 1;
if(y.id == 1) return 0;
return x.c < y.c;
}
int tre1[MAXN<<2],tre2[MAXN<<2],M;
int bing1(int x,int y) {
if(!x || !y) return x+y;
if(dp[x] != dp[y]) return dp[x] < dp[y] ? x:y;
return max(x,y);
}
int bing2(int x,int y) {
if(!x || !y) return x+y;
if(dp[x]+p[x].a != dp[y]+p[y].a) return dp[x]+p[x].a < dp[y]+p[y].a ? x:y;
return max(x,y);
}
void maketree(int n) {M=1;while(M<n+2)M<<=1;}
void addtree(int x,int y) {
int s = M+x;tre1[s] = tre2[s] = y;s >>= 1;
while(s) tre1[s] = bing1(tre1[s<<1],tre1[s<<1|1]),tre2[s] = bing2(tre2[s<<1],tre2[s<<1|1]),s >>= 1;
}
int findtree1(int l,int r) {
int as = 0; if(l > r) return as;
int s = M+l-1,t = M+r+1;
while(s || t) {
if((s>>1) ^ (t>>1)) {
if(!(s & 1)) as = bing1(as,tre1[s^1]);
if(t & 1) as = bing1(as,tre1[t^1]);
}else break;
s >>= 1;t >>= 1;
}return as;
}
int findtree2(int l,int r) {
int as = 0; if(l > r) return as;
int s = M+l-1,t = M+r+1;
while(s || t) {
if((s>>1) ^ (t>>1)) {
if(!(s & 1)) as = bing2(as,tre2[s^1]);
if(t & 1) as = bing2(as,tre2[t^1]);
}else break;
s >>= 1;t >>= 1;
}return as;
}
int rr[MAXN];
int main() {
n = read();
LL ans = 0;
for(int i = 1;i <= n;i ++) {
p[i].a = read();p[i].c = read();
ans += p[i].c;
p[i].id = i;
}
sort(p + 1,p + 1 + n,cmp);
maketree(n);
for(int i = 1;i < n;i ++) {
rr[i] = i;
for(int j = 17;j >= 0;j --) {
if(rr[i]+(1<<j) <= n && p[rr[i]+(1<<j)].a <= p[i].a+p[i].c) rr[i] += (1<<j);
}
}
dp[n] = 0;
addtree(n,n);
for(int i = n-1;i > 0;i --) {
int t1 = findtree1(i+1,rr[i]),t2 = findtree2(rr[i]+1,n);
dp[i] = 1e18;
if(t1) dp[i] = min(dp[i],dp[t1]);
if(t2) dp[i] = min(dp[i],dp[t2] + p[t2].a - (p[i].a+p[i].c));
addtree(i,i);
}
printf("%lld\n",ans + dp[1]);
return 0;
}
Codeforces 1503C Travelling Salesman Problem(Dynamic Programming)的更多相关文章
- PAT A1150 Travelling Salesman Problem (25 分)——图的遍历
The "travelling salesman problem" asks the following question: "Given a list of citie ...
- 1150 Travelling Salesman Problem(25 分)
The "travelling salesman problem" asks the following question: "Given a list of citie ...
- hdu 5402 Travelling Salesman Problem(大模拟)
Problem Description Teacher Mai ,) to the bottom right corner (n,m). He can choose one direction and ...
- #C++初学记录(动态规划(dynamic programming)例题1 钞票)
浅入动态规划 dynamic programming is a method for solving a complex problem by breaking it down into a coll ...
- 详解动态规划(Dynamic Programming)& 背包问题
详解动态规划(Dynamic Programming)& 背包问题 引入 有序号为1~n这n项工作,每项工作在Si时间开始,在Ti时间结束.对于每项工作都可以选择参加与否.如果选择了参与,那么 ...
- 笔试算法题(44):简介 - 动态规划(Dynamic Programming)
议题:动态规划(Dynamic Programming) 分析: DP主要用于解决包含重叠子问题(Overlapping Subproblems)的最优化问题,其基本策略是将原问题分解为相似的子问题, ...
- HDU 5402 Travelling Salesman Problem (模拟 有规律)(左上角到右下角路径权值最大,输出路径)
Travelling Salesman Problem Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 65536/65536 K (J ...
- 对动态规划(Dynamic Programming)的理解:从穷举开始(转)
转自:http://janfan.cn/chinese/2015/01/21/dynamic-programming.html 动态规划(Dynamic Programming,以下简称dp)是算法设 ...
- hdu 5402 Travelling Salesman Problem (技巧,未写完)
题意:给一个n*m的矩阵,每个格子中有一个数字,每个格子仅可以走一次,问从(1,1)走到(n,m) 的路径点权之和. 思路: 想了挺久,就是有个问题不能短时间证明,所以不敢下手. 显然只要n和m其中一 ...
随机推荐
- CabloyJS一站式助力微信、企业微信、钉钉开发 - 企业微信篇
前言 现在软件开发不仅要面对前端碎片化,还要面对后端碎片化.针对前端碎片化,CabloyJS提供了pc=mobile+pad的跨端自适应方案,参见:自适应布局:pc = mobile + pad 在这 ...
- Caller 服务调用 - Dapr
前言 上一篇我们讲了使用HttpClient的方式调用,那么如果我们现在需要更换为通过dapr实现服务调用,我们需要做哪些事情呢? Caller.Dapr 入门 如果我们的项目原本使用的是Caller ...
- Redis配置登录密码
更新记录 2022年6月14日 发布. 打开配置文件 vi /etc/redis/redis.conf 搜索来找到下面这行注释 #requirepass foobared 取消注释,把 foobare ...
- 23.Nginx+keepalived负载均衡高可用
Nginx+keepalived负载均衡高可用 结构图 环境: 主 服务器:192.168.239.10 备 服务器:192.168.239.20 Web 服务器1:192.168.239.40 We ...
- docker compose 部署 minio
1.docker-compose.yaml 文件如下: version: '3' services: minio: image: minio/minio:latest # 原镜像`minio/mini ...
- 开发人员要学的Docker从入门到日常命令使用(通俗易懂),专业运维人员请勿点!
一.介绍Docker 1.引言 问题1:开发人员告诉测试说自己的项目已经做好了,给你一个发布包,你去测试吧. ## 测试人员,为什么我运行会报错? ## 开发人员说,我本地运行没有问题呀! 解答 ...
- 5-18 Nacos配置中心 | RestTemplate
配置中心 什么是配置中心 所谓配置中心:将项目需要的配置信息保存在配置中心,需要读取时直接从配置中心读取,方便配置管理的微服务工具 我们可以将部分yml文件的内容保存在配置中心 一个微服务项目有很多子 ...
- day02-2
JAVA入门 1.C&&C++ 1972年C诞生 贴近硬件,运行极快,效率极高 操作系统,编译器,数据库,网络系统等 指针和内存管理 1982年C++诞生 面向对象 兼容C 图形领域. ...
- Python 元类详解
一.Type介绍 在Python中一切皆对象,类它也是对象,而元类其实就是用来创建类的对象(由于一切皆对象,所以元类其实也是一个对象). 先来看这几个例子: 例1: In [1]: type(12) ...
- B+树索引页大小是如何确定的?
B+树简介 在正式介绍本文的主题前,需要对 B+ 树有一定的了解,B+树是一种磁盘上数据的索引结构,大概长这个样子. B+树的叶子节点是所有的数据,非叶子节点称为索引页,索引页里有若干个索引项,本例中 ...