NLP知识图谱项目合集(信息抽取、文本分类、图神经网络、性能优化等)

这段时间完成了很多大大小小的小项目,现在做一个整体归纳方便学习和收藏,有利于持续学习。

1. 信息抽取项目合集

2.文本分类意图识别项目合集

3.模型性能提升项目合集

4.知识图谱项目合集

特定领域知识图谱(Domain-specific KnowledgeGraph:DKG)融合方案(重点!)

在前面技术知识下可以看看后续的实际业务落地方案和学术方案

关于图神经网络的知识融合技术学习参考下面链接PGL图学习项目合集&数据集分享&技术归纳业务落地技巧[系列十]

从入门知识到经典图算法以及进阶图算法等,自行查阅食用!

文章篇幅有限请参考专栏按需查阅:NLP知识图谱相关技术业务落地方案和码源

4.1 特定领域知识图谱知识融合方案(实体对齐):优酷领域知识图谱为例

方案链接:https://blog.csdn.net/sinat_39620217/article/details/128614951

4.2 特定领域知识图谱知识融合方案(实体对齐):文娱知识图谱构建之人物实体对齐

方案链接:https://blog.csdn.net/sinat_39620217/article/details/128673963

4.3 特定领域知识图谱知识融合方案(实体对齐):商品知识图谱技术实战

方案链接:https://blog.csdn.net/sinat_39620217/article/details/128674429

4.4 特定领域知识图谱知识融合方案(实体对齐):基于图神经网络的商品异构实体表征探索

方案链接:https://blog.csdn.net/sinat_39620217/article/details/128674929

4.5 特定领域知识图谱知识融合方案(实体对齐)论文合集

方案链接:https://blog.csdn.net/sinat_39620217/article/details/128675199

论文资料链接:两份内容不相同,且按照序号从小到大重要性依次递减

知识图谱实体对齐资料论文参考(PDF)+实体对齐方案+特定领域知识图谱知识融合方案(实体对齐)

知识图谱实体对齐资料论文参考(CAJ)+实体对齐方案+特定领域知识图谱知识融合方案(实体对齐)

4.6 知识融合算法测试方案(知识生产质量保障)

方案链接:https://blog.csdn.net/sinat_39620217/article/details/128675698

5.图神经网络

1.1 关于图计算&图学习的基础知识概览:前置知识点学习(PGL)[系列一]https://aistudio.baidu.com/aistudio/projectdetail/4982973?contributionType=1

本项目对图基本概念、关键技术(表示方法、存储方式、经典算法),应用等都进行详细讲解,并在最后用程序实现各类算法方便大家更好的理解。当然之后所有图计算相关都是为了知识图谱构建的前置条件

1.2 图机器学习(GML)&图神经网络(GNN)原理和代码实现(前置学习系列二)

https://aistudio.baidu.com/aistudio/projectdetail/4990947?contributionType=1

现在已经覆盖了图的介绍,图的主要类型,不同的图算法,在Python中使用Networkx来实现它们,以及用于节点标记,链接预测和图嵌入的图学习技术,最后讲了GNN分类应用以及未来发展方向!

1.3 图学习初探Paddle Graph Learning 构建属于自己的图【系列三】

https://aistudio.baidu.com/aistudio/projectdetail/5000517?contributionType=1

本项目主要讲解了图学习的基本概念、图的应用场景、以及图算法,最后介绍了PGL图学习框架并给出demo实践,过程中把老项目demo修正版本兼容问题等小坑,并在最新版本运行便于后续同学更有体验感

1.4 PGL图学习之图游走类node2vec、deepwalk模型[系列四]

https://aistudio.baidu.com/aistudio/projectdetail/5002782?contributionType=1

介绍了图嵌入原理以及了图嵌入中的DeepWalk、node2vec算法,利用pgl对DeepWalk、node2vec进行了实现,并给出了多个框架版本的demo满足个性化需求。

介绍词向量word2evc概念,及CBOW和Skip-gram的算法实现。

主要引入基本的同构图、异构图知识以及基本概念;同时对deepWalk代码的注解以及node2vec、word2vec的说明总结;(以及作业代码注解)

1.5 PGL图学习之图游走类metapath2vec模型[系列五]

https://aistudio.baidu.com/aistudio/projectdetail/5009827?contributionType=1

介绍了异质图,利用pgl对metapath2vec以及metapath2vec变种算法进行了实现,同时讲解实现图分布式引擎训练,并给出了多个框架版本的demo满足个性化需求。

1.6 PGL图学习之图神经网络GNN模型GCN、GAT[系列六] [https://aistudio.baidu.com/aistudio/projectdetail/5054122?contributionType=1](https://aistudio.baidu.com/aistudio/projectdetail/5054122?c

ontributionType=1)

本次项目讲解了图神经网络的原理并对GCN、GAT实现方式进行讲解,最后基于PGL实现了两个算法在数据集Cora、Pubmed、Citeseer的表现,在引文网络基准测试中达到了与论文同等水平的指标。

1.7 PGL图学习之图神经网络GraphSAGE、GIN图采样算法[系列七] https://aistudio.baidu.com/aistudio/projectdetail/5061984?contributionType=1

本项目主要讲解了GraphSage、PinSage、GIN算法的原理和实践,

并在多个数据集上进行仿真实验,基于PGl实现原论文复现和对比,也从多个角度探讨当前算法的异同以及在工业落地的技巧等。

1.8 PGL图学习之图神经网络ERNIESage、UniMP进阶模型[系列八]

https://aistudio.baidu.com/aistudio/projectdetail/5096910?contributionType=1

ErnieSage 可以同时建模文本语义与图结构信息,有效提升 Text Graph 的应用效果;UniMP 在概念上统一了特征传播和标签传播, 在OGB取得了优异的半监督分类结果。

ERNIESage运行实例介绍(1.8x版本),提供多个版本pgl代码实现

1.9 PGL图学习之项目实践(UniMP算法实现论文节点分类、新冠疫苗项目)[系列九]

https://aistudio.baidu.com/aistudio/projectdetail/5100049?contributionType=1

本项目借鉴了百度高研黄正杰大佬对图神经网络技术分析以及图算法在业务侧应用落地;实现了论文节点分类和新冠疫苗项目的实践帮助大家更好理解学习图的魅力。

图神经网络7日打卡营的新冠疫苗项目拔高实战

基于UniMP算法的论文引用网络节点分类,在调通UniMP之后,后续尝试的技巧对于其精度的提升效力微乎其微,所以不得不再次感叹百度PGL团队的强大!

6.其他项目

强化学习

深度学习

༄ℳ持续更新中ꦿོ࿐

NLP知识图谱项目合集(信息抽取、文本分类、图神经网络、性能优化等)的更多相关文章

  1. 深度学习优质学习项目大放送!-AI Studio精选开源项目合集推荐

    近期 在AI Studio上发现了不少优质的开源深度学习项目,从深度学习入门到进阶,涵盖了CV.NLP.生成对抗网络.强化学习多个研究方向,还有最新的动态图,都以NoteBook的方式直接开源出来,并 ...

  2. Python之路【第二十四篇】:Python学习路径及练手项目合集

      Python学习路径及练手项目合集 Wayne Shi· 2 个月前 参照:https://zhuanlan.zhihu.com/p/23561159 更多文章欢迎关注专栏:学习编程. 本系列Py ...

  3. 超全的 Vue 开源项目合集,签收一下

    超全的 Vue 开源项目合集,签收一下 xiaoge2016 前端开发 1周前 作者:xiaoge2016 链接: https://my.oschina.net/u/3018050/blog/2049 ...

  4. Python学习路径及练手项目合集

    Python学习路径及练手项目合集 https://zhuanlan.zhihu.com/p/23561159

  5. 最新最全的 Android 开源项目合集

    原文链接:https://github.com/opendigg/awesome-github-android-ui 在 Github 上做了一个很新的 Android 开发相关开源项目汇总,涉及到 ...

  6. 基于.NET Core的优秀开源项目合集

    开源项目非常适合入门,并且可以作为体系结构参考的好资源, GitHub中有几个开源的.NET Core项目,这些项目将帮助您使用不同类型的体系结构和编码模式来深入学习 .NET Core技术, 本文列 ...

  7. NLP(二十八)多标签文本分类

      本文将会讲述如何实现多标签文本分类. 什么是多标签分类?   在分类问题中,我们已经接触过二分类和多分类问题了.所谓二(多)分类问题,指的是y值一共有两(多)个类别,每个样本的y值只能属于其中的一 ...

  8. GitHub上个最有意思的项目合集(技术清单系列)

    没有1K以上的星星都不好意思推荐给大家!林子大了,啥项目都有,这里给大家搜罗了10个Github上有趣的项目.如果你就着辣椒食用本文,一定会激动的流下泪来...... 1.一行代码没有 | 18k s ...

  9. (转)Python学习路径及练手项目合集

    转载自知乎 Wayne Shi,仅仅为了方便收藏查看,侵权删. 阶段1:入门知识 零编程基础的可以先从下面几个教程了解编程及环境入门知识.(已有编程基础直接从阶段2起步) 1. 编程新手指南2. Li ...

  10. [ Linux运维学习 ] 路径及实战项目合集

    我们知道运维工程师(Operations)最基本的职责就是负责服务的稳定性并确保整个服务的高可用性,同时不断优化系统架构.提升部署效率.优化资源利用率,确保服务可以7*24H不间断地为用户提供服务. ...

随机推荐

  1. 三、Ocelot请求聚合与负载均衡

    上一篇文章介绍了在.Net Core中如何使用Ocelot:https://www.cnblogs.com/yangleiyu/p/16847439.html 本文介绍在ocelot的请求聚合与负载均 ...

  2. UML建模语言、设计原则、设计模式

    1.UML统一建模语言 定义:用于软件系统设计与分析的语言工具 目的:帮助开发人员更好的梳理逻辑.思路 学习地址:UML概述_w3cschool 官网:https://www.omg.org/spec ...

  3. c++ 关于引用变量你不知道的东西

    引用变量延迟绑定 我们知道引用变量定义时要立刻赋值,告诉编译器他是谁的引用.如果不赋值,编译会失败. 如果引用变量是单个定义的,对他赋值还比较简单. struct test_T { int data; ...

  4. Java安全之反序列化(1)

    序列化与反序列化 概述 Java序列化是指把Java对象转换为字节序列的过程:这串字符可能被储存/发送到任何需要的位置,在适当的时候,再将它转回原本的 Java 对象,而Java反序列化是指把字节序列 ...

  5. docker使用代理(in home)

    docker 使用 http http_proxy https://docs.docker.com/config/daemon/systemd/ # 代理 和 国内 镜像源 不要 同时使用,... # ...

  6. 【翻译】Spring Security - 如何解决WebSecurityConfigurerAdapter类已被弃用的问题?

    原文链接:Spring Security - How to Fix WebSecurityConfigurerAdapter Deprecated 原文作者:Nam Ha Minh 原文发表日期:20 ...

  7. C++初阶(命名空间+缺省参数+const总结+引用总结+内联函数+auto关键字)

    命名空间 概述 在C/C++中,变量.函数和后面要学到的类都是大量存在的,这些变量.函数和类的名称将都存在于全局作用域中,可能会导致很多冲突.使用命名空间的目的是对标识符的名称进行本地化,以避免命名冲 ...

  8. Java安全之CC4,5,7

    前言 前边已经将CC链中的关键部分学习差不多,接下来就是一些扩展思路, CC4 ObjectInputStream.readObject() PriorityQueue.readObject() Pr ...

  9. mindxdl---common---db_handler.go

    // Copyright (c) 2021. Huawei Technologies Co., Ltd. All rights reserved.// Package common this file ...

  10. 线性时间选择(含平均情况O(n)和最坏情况O(n)算法)

    前言 本篇文章我将介绍 期望为线性时间 的选择算法和 最坏情况为线性时间 的选择算法,即分别为 平均情况下时间复杂度为O(n) 和 最坏情况下时间复杂度为O(n) 的线性时间选择.以下包含了我自己的全 ...