有向图的拓扑排序——DFS
在有向图的拓扑排序——BFS这篇文章中,介绍了有向图的拓扑排序的定义以及使用广度优先搜索(BFS)对有向图进行拓扑排序的方法,这里再介绍另一种方法:深度优先搜索(DFS)。
算法
考虑下面这张图:
首先,我们需要维护一个栈,用来存放DFS到的节点。另外规定每个节点有两个状态:未访问(这里用蓝绿色表示)、已访问(这里用黑色表示)。
任选一个节点开始DFS,比如这里就从0开始吧。
首先将节点0的状态设为已访问,然后节点0的邻居(节点0的出边指向的节点)共有1个:节点2,它是未访问状态,于是顺下去访问节点2。
节点2的状态也设为已访问。节点2有3个邻居:3、4、5,都是未访问状态,不妨从3开始。一直这样访问下去,直到访问到没有出边的节点7。
节点7没有出边了,这时候就将节点7入栈。
退回到节点6,虽然6还有邻居,但是唯一的邻居节点7是已访问状态,也入栈。再次退回,节点4的两个邻居也都已访问,依旧入栈并后退。以此类推,退回到节点2。
节点2有3个邻居,其中节点3和4已访问,但是节点5还未访问,访问节点5。
接下来的步骤是一样的,不再赘述了,直接退回到节点0并将0入栈。
现在,从节点0开始的DFS宣告结束,但是图中还有未访问的节点:节点1,从节点1继续开始DFS。
节点1的邻居节点2已经访问过了,直接将节点1入栈。
至此,整个DFS过程宣告结束。从栈顶到栈底的节点序列1 0 2 5 3 4 6 7就是整个图的一个拓扑排序序列。
实现
这里同样使用类型别名node_t
代表节点序号unsigned long long
:
using node_t = unsigned long long;
同样使用邻接表来存储图结构,整个图的定义如下:
class Graph {
unsigned long long n;
vector<vector<node_t>> adj;
protected:
void dfs(node_t cur, vector<bool> &visited, stack<node_t> &nodeStack);
public:
Graph(initializer_list<initializer_list<node_t>> list) : n(list.size()), adj({}) {
for (auto &l : list) {
adj.emplace_back(l);
}
}
vector<node_t> toposortDfs();
};
DFS
函数dfs
的参数及说明如下:
cur
:当前访问的节点。visited
:存放各个节点状态的数组,false
表示未访问,true
表示已访问。初始化为全为false
。nodeStack
:存放节点的栈。
整个过程如下:
- 首先,我们需要将当前节点的状态设为已访问:
visited[cur] = true;
- 依次检查当前节点的所有邻居的状态:
for (node_t neighbor: adj[cur]) {
// ...
}
- 如果某个节点已访问,则跳过。
if (visited[neighbor]) continue;
- 否则,递归的对该节点进行DFS:
dfs(neighbor, visited, nodeStack);
- 所有邻居检查完后,就将该节点入栈:
nodeStack.push(cur);
整个dfs
函数的代码如下:
void Graph::dfs(node_t cur, vector<bool> &visited, stack<node_t> &nodeStack) {
visited[cur] = true;
for (node_t neighbor: adj[cur]) {
if (visited[neighbor]) continue;
dfs(neighbor, visited, nodeStack);
}
nodeStack.push(cur);
}
拓扑排序
我们需要初始化3个数据结构:
sort
:存放拓扑排序序列的数组。visited
:见上文。nodeStack
:见上文。
vector<node_t> sort;
vector<bool> visited(n, false);
stack<node_t> nodeStack;
整个过程如下:
- 依次检查每个节点的状态,如果未访问,则从该节点开始进行DFS:
for (node_t node = 0; node < n; ++node) {
if (visited[node]) continue;
dfs(node, visited, nodeStack);
}
- 此时
nodeStack
已经存储了整个拓扑排序序列,我们只需要转移到sort
数组并返回即可:
while (!nodeStack.empty()) {
sort.push_back(nodeStack.top());
nodeStack.pop();
}
return sort;
整个代码如下:
vector<node_t> Graph::toposortDfs() {
vector<node_t> sort;
vector<bool> visited(n, false);
stack<node_t> nodeStack;
for (node_t node = 0; node < n; ++node) {
if (visited[node]) continue;
dfs(node, visited, nodeStack);
}
while (!nodeStack.empty()) {
sort.push_back(nodeStack.top());
nodeStack.pop();
}
return sort;
}
测试
代码:
int main() {
Graph graph{{2},
{2},
{3, 4, 5},
{4},
{6, 7},
{4},
{7},
{}};
auto sort = graph.toposortDfs();
cout << "The topology sort sequence is:\n";
for (const auto &node: sort) {
cout << node << ' ';
}
return 0;
}
输出:
The topology sort sequence is:
1 0 2 5 3 4 6 7
复杂度分析
- 时间复杂度:\(O(n+e)\),\(n\)为节点总数,\(e\)为边的总数。其中DFS的时间复杂度为\(O(n+e)\)。
- 空间复杂度:\(O(n)\)(邻接表的空间复杂度为\(O(n+e)\),不计入在内),其中维护
visited
数组和nodeStack
栈分别需要\(O(n)\)的额外空间。
有向图的拓扑排序——DFS的更多相关文章
- ACM/ICPC 之 拓扑排序+DFS(POJ1128(ZOJ1083)-POJ1270)
两道经典的同类型拓扑排序+DFS问题,第二题较第一题简单,其中的难点在于字典序输出+建立单向无环图,另外理解题意是最难的难点,没有之一... POJ1128(ZOJ1083)-Frame Stacki ...
- 拓扑排序+DFS(POJ1270)
[日后练手](非解题) 拓扑排序+DFS(POJ1270) #include<stdio.h> #include<iostream> #include<cstdio> ...
- 拓扑排序-DFS
拓扑排序的DFS算法 输入:一个有向图 输出:顶点的拓扑序列 具体流程: (1) 调用DFS算法计算每一个顶点v的遍历完成时间f[v] (2) 当一个顶点完成遍历时,将该顶点放到一个链表的最前面 (3 ...
- 有向图和拓扑排序Java实现
package practice; import java.util.ArrayDeque; import java.util.Iterator; import java.util.Stack; pu ...
- CodeForces-1217D (拓扑排序/dfs 判环)
题意 https://vjudge.net/problem/CodeForces-1217D 请给一个有向图着色,使得没有一个环只有一个颜色,您需要最小化使用颜色的数量. 思路 因为是有向图,每个环两 ...
- 有向图的拓扑排序算法JAVA实现
一,问题描述 给定一个有向图G=(V,E),将之进行拓扑排序,如果图有环,则提示异常. 要想实现图的算法,如拓扑排序.最短路径……并运行看输出结果,首先就得构造一个图.由于构造图的方式有很多种,这里假 ...
- Ordering Tasks(拓扑排序+dfs)
Ordering Tasks John has n tasks to do. Unfortunately, the tasks are not independent and the executio ...
- HDU 5438 拓扑排序+DFS
Ponds Time Limit: 1500/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Sub ...
- C++编程练习(12)----“有向图的拓扑排序“
设G={V,E}是一个具有 n 个顶点的有向图,V中的顶点序列 v1,v2,......,vn,满足若从顶点 vi 到 vj 有一条路径,则在顶点序列中顶点 vi 必在顶点 vj 之前.则称这样的顶点 ...
- POJ1128 Frame Stacking(拓扑排序+dfs)题解
Description Consider the following 5 picture frames placed on an 9 x 8 array. ........ ........ ... ...
随机推荐
- python的注释、变量
注释 注释是代码的解释型语言,不会影响代码执行,就是专门给程序员看的. 注释是很重要的代码组成部分! # 单行注释 ''' 多行注释 连续输入三个单引号 ''' """ ...
- C++面向对象编程之虚函数与多态和继承和复合下的构造和析构
1.对于非虚函数,是不希望派生类对该函数重新定义: 对于virtual函数,在父类已经有默认定义后,并希望子类重新定义它: 对于pure virtual函数,父类没有默认定义,派生类必须要重新定义它: ...
- P1399 [NOI2013] 快餐店 方法记录
原题题面P1399 [NOI2013] 快餐店 题目描述 小 T 打算在城市 C 开设一家外送快餐店.送餐到某一个地点的时间与外卖店到该地点之间最短路径长度是成正比的,小 T 希望快餐店的地址选在离最 ...
- 一个电器工厂可以生产多种类型的电器,如海尔工厂可以生产海尔电视机、海尔空调等,TCL工厂可以生产TCL电视机,TCL空调等,相同品牌的电器构成一个产品族,而相同类型的电器构成了一个产品等级结构,现使用
一个电器工厂可以生产多种类型的电器,如海尔工厂可以生产海尔电视机.海尔空调等,TCL工厂可以生产TCL电视机,TCL空调等,相同品牌的电器构成一个产品族,而相同类型的电器构成了一个产品等级结构,现使用 ...
- echarts在Vue项目中的实际运用效果图
文章目录 1.在后台系统首页中.可以根据需求制作相应的图表 2.在Vue中使用echarts的详细过程参照这个链接 1.在后台系统首页中.可以根据需求制作相应的图表 2.在Vue中使用echarts的 ...
- Python爬虫requests请求库
requests:pip install request 安装 实例: import requestsurl = 'http://www.baidu.com'response = requests. ...
- 8.-Django应用及分布式路由
一.应用 应用在Django项目中是一个独立的业务模块,可以包含自己的路由.视图.模版.模型,可以看成一个小的mtv 创建步骤 1.项目下用manage.py中的子命令创建应用文件夹 python3 ...
- scrapy传递 item时的 数据不匹配 和一些注意事项
item 在传递数据时需要拷贝内存地址 yield scrapy.Request( url=title_url, callback=self.parse_detail, # 用深拷贝的方式 复制子对象 ...
- Jekyll于windows中使用
安装 安装Ruby http://rubyinstaller.org/downloads/ 于其中选择最新的带dev套件的. 在安装时,安装目录不能有空格,检查是否已经安装成功 ruby -v gem ...
- 前端常见loading动画
loading动画是前端页面加载时必不可少的元素,好看合适的加载动画会极大的提升用户体验与系统的交互效果.下面为大家提供几种简单的加载动画效果,如果帮助到你了请点赞评论. 1.无限循环的圆圈 < ...