周而复始,往复循环,递归、尾递归算法与无限极层级结构的探究和使用(Golang1.18)
所有人都听过这样一个歌谣:从前有座山,山里有座庙,庙里有个和尚在讲故事:从前有座山。。。。,虽然这个歌谣并没有一个递归边界条件跳出循环,但无疑地,这是递归算法最朴素的落地实现,本次我们使用Golang1.18回溯递归与迭代算法的落地场景应用。
递归思想与实现
递归思想并非是鲜为人知的高级概念,只不过是一种相对普遍的逆向思维方式,这一点我们在:人理解迭代,神则体会递归,从电影艺术到Python代码实现神的逆向思维模式中已经探讨过,说白了就是一个函数直接或者间接的调用自己,就是递归,本文开篇和尚讲故事的例子中,和尚不停地把他自己和他所在的庙和山调用在自己的故事中,因此形成了一个往复循环的递归故事,但这个故事有个致命问题,那就是停不下来,只能不停地讲下去,所以一个正常的递归必须得有一个递归边界条件,用来跳出无限递归的循环:
package main
import (
"fmt"
)
func story(n int) int {
if n <= 0 {
return 0
}
return story(n - 1)
}
func main() {
res := story(5)
fmt.Println(res)
}
这里我们声明了一个故事函数,参数为n,即讲n遍同样的故事,并且调用自己,每讲一次n减1,即减少一次讲故事总数,但如果我们不设置一个递归边界条件,那么函数就会无限递归下去,所以如果n小于等于0了,那么我们就结束这个故事:
➜ mydemo git:(master) ✗ go run "/Users/liuyue/wodfan/work/mydemo/tests.go"
0
所以 if n <= 0 就是递归边界条件。
那么递归的底层是如何实现的呢?假设我们要针对n次故事做一个高斯求和:
package main
import (
"fmt"
)
func story(n int) int {
if n <= 0 {
return 0
}
return n + story(n-1)
}
func main() {
res := story(5)
fmt.Println(res)
}
程序输出:
➜ mydemo git:(master) ✗ go run "/Users/liuyue/wodfan/work/mydemo/tests.go"
15
那么这一次递归高斯求和函数的底层实现应该是这样:
5+story(4)
5+(4+ story(3))
5+(4+(3+ story(2)))
5+(4+(3+(2+ story(1))))
5+(4+(3+(2+1)))
15
当story函数每次被调用时,都会在内存中创建一个帧,来包含函数的局部变量和参数,对于递归函数,栈上可能同时存在多个函数帧。当每调用一次函数story(n)时,栈顶指针就会往栈顶移动一个位置,直到满足退出递归的条件(n<=0)之后再依次返回当前的结果直接,栈顶指针被压入栈底方向。
也就是说,内存栈会存储每一次递归的局部变量和参数,这也就是递归算法的性能被人们所诟病的原因,即不是自己调用自己而性能差,而是自己调用自己时,系统需要保存每次调用的值而性能差。
尾递归优化
尾递归相对传统的普通递归,其是一种特例。在尾递归中,先执行某部分的计算,然后开始调用递归,所以你可以得到当前的计算结果,而这个结果也将作为参数传入下一次递归。这也就是说函数调用出现在调用者函数的尾部,因为是尾部,所以其有一个优越于传统递归之处在于无需去保存任何局部变量,从内存消耗上,实现节约特性:
package main
import (
"fmt"
)
func tail_story(n int, save int) int {
if n <= 0 {
return save
}
return tail_story(n-1, save+n)
}
func main() {
save := 0
res := tail_story(5, save)
fmt.Println(res)
}
程序返回:
➜ mydemo git:(master) ✗ go run "/Users/liuyue/wodfan/work/mydemo/tests.go"
15
可以看到,求和结果和普通递归是一样的,但过程可不一样:
tail_story(5,0)
tail_story(4,5)
tail_story(3,9)
tail_story(2,12)
tail_story(1,14)
tail_story(0,15)
因为尾递归通过参数将计算结果进行传递,递归过程中系统并不保存所有的计算结果,而是利用参数覆盖旧的结果,如此,就不会到处栈溢出等性能问题了。
递归应用场景
在实际工作中,我们当然不会使用递归讲故事或者只是为了计算高斯求和,大部分时间,递归算法会出现在迭代未知高度的层级结构中,即所谓的“无限极”分类问题:
package main
import (
"fmt"
)
type cate struct {
id int
name string
pid int
}
func main() {
allCate := []cate{
cate{1, "计算机课程", 0},
cate{2, "美术课程", 0},
cate{3, "舞蹈课程", 0},
cate{4, "Golang", 1},
cate{5, "国画", 2},
cate{6, "芭蕾舞", 3},
cate{7, "Iris课程", 4},
cate{8, "工笔", 5},
cate{9, "形体", 6},
}
fmt.Println(allCate)
}
程序输出:
[{1 计算机课程 0} {2 美术课程 0} {3 舞蹈课程 0} {4 Golang 1} {5 国画 2} {6 芭蕾舞 3} {7 Iris课程 4} {8 工笔 5} {9 形体 6}]
可以看到,结构体cate中使用pid来记录父分类,但展示的时候是平级结构,并非层级结构。
这里使用递归算法进行层级结构转换:
type Tree struct {
id int
name string
pid int
son []Tree
}
新增加一个Tree的结构体,新增一个子集的嵌套属性。
随后建立递归层级结构函数:
func CategoryTree(allCate []cate, pid int) []Tree {
var arr []Tree
for _, v := range allCate {
if pid == v.pid {
ctree := Tree{}
ctree.id = v.id
ctree.pid = v.pid
ctree.name = v.name
sonCate := CategoryTree(allCate, v.id)
ctree.son = sonCate
arr = append(arr, ctree)
}
}
return arr
}
随后调用输出:
package main
import (
"fmt"
)
type cate struct {
id int
name string
pid int
}
type Tree struct {
id int
name string
pid int
son []Tree
}
func CategoryTree(allCate []cate, pid int) []Tree {
var arr []Tree
for _, v := range allCate {
if pid == v.pid {
ctree := Tree{}
ctree.id = v.id
ctree.pid = v.pid
ctree.name = v.name
sonCate := CategoryTree(allCate, v.id)
ctree.son = sonCate
arr = append(arr, ctree)
}
}
return arr
}
func main() {
allCate := []cate{
cate{1, "计算机课程", 0},
cate{2, "美术课程", 0},
cate{3, "舞蹈课程", 0},
cate{4, "Golang", 1},
cate{5, "国画", 2},
cate{6, "芭蕾舞", 3},
cate{7, "Iris课程", 4},
cate{8, "工笔", 5},
cate{9, "形体", 6},
}
arr := CategoryTree(allCate, 0)
fmt.Println(arr)
}
程序返回:
[{1 计算机课程 0 [{4 Golang 1 [{7 Iris课程 4 []}]}]} {2 美术课程 0 [{5 国画 2 [{8 工笔 5 []}]}]} {3 舞蹈课程 0 [{6 芭蕾舞 3 [{9 形体 6 []}]}]}]
这里和Python版本的无限极分类:使用Python3.7+Django2.0.4配合vue.js2.0的组件递归来实现无限级分类(递归层级结构)有异曲同工之处,但很显然,使用结构体的Golang代码可读性更高。
结语
递归并非是刻板印象中的性能差又难懂的算法,正相反,它反而可以让代码更加简洁易懂,在程序中使用递归,可以更通俗、更直观的描述逻辑。
周而复始,往复循环,递归、尾递归算法与无限极层级结构的探究和使用(Golang1.18)的更多相关文章
- c#:无限极树形结构
最近一直在研究树形结构菜单,无意中让我弄了出来.先上代码: 首先需要这个的一个类 public class Tree { public int id { get; set; } public stri ...
- SQL 横转竖 、竖专横 (转载) 使用Dapper.Contrib 开发.net core程序,兼容多种数据库 C# 读取PDF多级书签 Json.net日期格式化设置 ASPNET 下载共享文件 ASPNET 文件批量下载 递归,循环,尾递归 利用IDisposable接口构建包含非托管资源对象 《.NET 进阶指南》读书笔记2------定义不可改变类型
SQL 横转竖 .竖专横 (转载) 普通行列转换 问题:假设有张学生成绩表(tb)如下: 姓名 课程 分数 张三 语文 74 张三 数学 83 张三 物理 93 李四 语文 74 李四 数学 84 ...
- 【C/C++】n皇后问题/全排列/递归/回溯/算法笔记4.3
按常规,先说一下我自己的理解. 递归中的return常用来作为递归终止的条件,但是对于返回数值的情况,要搞明白它是怎么返回的.递归的方式就是自己调用自己,而在有返回值的函数中,上一层的函数还没执行完就 ...
- 无限极分类(adjacency list)的三种方式(迭代、递归、引用)
一般的分类树状结构有两种方式: 一种是adjacency list,也就是是id,parent id这中形式. 另一种是nested set,即左右值的形式. 左右值形式查询起来比较高效,无需递归等, ...
- PHP 递归无限极下级
下面是自己用到的一些递归方法,当然都是借鉴的,各位看官请勿怪 第一种 有层级 $array = array( array('id' => 1, 'pid' => 0, 'n' => ...
- PHP实现无限极分类的两种方式,递归和引用
面试的时候被问到无限极分类的设计和实现,比较常见的做法是在建表的时候,增加一个PID字段用来区别自己所属的分类 $array = array( array('id' => 1, 'pid' =& ...
- 逆转序列的递归/尾递归(+destructuring assignment)实现(JavaScript + ES6)
这里是用 JavaScript 做的逆转序列(数组/字符串)的递归/尾递归实现.另外还尝鲜用了一下 ES6 的destructuring assignment + spread operator 做了 ...
- [迷宫中的算法实践]迷宫生成算法——递归分割算法
Recursive division method Mazes can be created with recursive division, an algorithm which wo ...
- linux循环递归设置权限
这里给出一个循环递归得到对文件夹和文件分别有效的设置方法: find /path -type f -exec chmod 644 {} \; #对目录和子目录里的文件 find /path -type ...
- 递归分治算法之二维数组二分查找(Java版本)
[java] /** * 递归分治算法学习之二维二分查找 * @author Sking 问题描述: 存在一个二维数组T[m][n],每一行元素从左到右递增, 每一列元素从上到下递增,现在需要查找元素 ...
随机推荐
- HDU2586 How far away ? (树链剖分求LCA)
用树链剖分求LCA的模板: 1 #include<iostream> 2 #include<algorithm> 3 using namespace std; 4 const ...
- 使用Java实现haskell-style的list
作为一个haskell这门函数式编程语言的爱好者,我特别喜欢它的list操作和推导功能.与传统面向对象或者过程语言不同的是,函数式语言通常喜欢把它们分为head.tail或者init.last等两部分 ...
- selenium4-定位单个页面元素
在操作各项页面元素之前,先介绍下如何通过Python代码来找到这些元素.WebDriver提供了18种元素定位方法,共分为两类(定位当个元素.定位组元素),本节先举例详细介绍下selenium4-定位 ...
- Go | 基本数据类型详解
前言 基本数据类型,变量存的就是值,也叫值类型.每一种数据都定义了明确的数据类型,在内存中分配了不同大小的内存空间. Printf 和 Println 的区别 printf 输出后不换行, print ...
- 18.-cookies和session
一.会话定义 从打开浏览器访问一个网站,到关闭浏览器结束此次访问,称之为一次绘画 HTTP协议是无状态的,导致绘画状态难以保持 Cookies和session就是为了保持会话状态而诞生的两个存储技术 ...
- DevOps | 如何快速提升团队软件开发成熟度,快速提升研发效能?
今天一个小伙伴问我,如何「快速提升」一个团队的软件开发成熟度?我犯难了.我个人理解一个团队的软件开发成熟度涉及的东西很多,但最简单最直接的方法就是发钱涨工资,可是估计很多公司不愿意,那就只有扣了. 快 ...
- SQL--临时表的使用
临时表的创建 临时表分为:本地临时表和全局临时表 通俗区分: 本地临时表:只能在当前查询页面使用,新开的查询是不能使用它的 #temp 全局临时表:不管开多少查询页面都可以使用 ##temp ...
- 十一、Pod的健康检查-探针
Pod 的健康检查-探针 一.Pod 的健康检查-探针 1.1.探针基本概念 探针是由 kubelet 对容器执行的定期诊断.要执行诊断,kubelet 调用由容器实现的 Handler 有三种类型 ...
- Docker基础和常用命令
Docker基础和常用命令 一,Docker 简介 1.1,什么是 Docker Docker 使用 Google 公司推出的 Go 语言 进行开发实现,基于 Linux 内核的 cgroup,nam ...
- 「浙江理工大学ACM入队200题系列」问题 L: 零基础学C/C++85——完美数
本题是浙江理工大学ACM入队200题第八套中的L题 我们先来看一下这题的题面. 题面 题目描述 任何一个自然数的约数中都有1和它本身,我们把小于它本身的因数叫做这个自然数的真约数. 如6的所有真约数是 ...