本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes

1 简介

  大家好我是费老师,一些比较熟悉pandas的读者朋友应该经常会使用query()eval()pipe()assign()pandas的常用方法(相关知识详见我的pandas专题教程https://www.cnblogs.com/feffery/tag/pandas/),书写可读性很高的链式数据分析处理代码,从而更加丝滑流畅地组织代码逻辑。

  但在原生Python中并没有提供类似shell中的管道操作符|R中的管道操作符%>%等语法,也没有针对列表等数组结构的可进行链式书写的快捷方法,譬如javascript中数组的map()filter()some()every()等。

  正所谓“标准库不够,三方库来凑”,Python原生对链式写法支持不到位没关系,我们可以使用一些简单方便且轻量的第三方库来协助我们在Python代码中大面积实现链式写法,今天的文章中费老师我就将带大家一起学习相关的知识技巧~

2 在Python中配合pipe灵活使用链式写法

  我们将使用到pipe这个第三方库,它不仅内置了很多实用的管道操作函数,还提供了将常规函数快捷转换为管道操作函数的方法,使用pip install pipe对其进行安装即可。

  pipe的用法非常方便,类似shell中的管道操作:以你的数组变量为起点,使用操作符|衔接pipe内置的各个常见管道操作函数,组装起自己所需的计算步骤即可,譬如,我们筛选输入数组中为偶数的,再求平方,就可以写作:

import pipe

list(
range(10) |
pipe.filter(lambda x: x % 2 == 0) |
pipe.select(lambda x: x ** 2)
)

  因为pipe搭建的管道默认都是惰性运算的,直接产生的结果是生成器类型,所以上面的例子中我们最外层套上了list()来取得实际计算结果,更优雅的方式是配合pipe.Pipe(),将list()也改造为管道操作函数:

from pipe import Pipe

(
range(10) |
pipe.filter(lambda x: x % 2 == 0) |
pipe.select(lambda x: x ** 2) |
Pipe(list)
)

  在上面的简单例子中我们使用到的filter()select()等就是pipe中常见的管道操作函数,事实上pipe中的管道操作函数相当的丰富,下面我们来展示其中一些常用的:

2.1 pipe中常用的管道操作函数

2.1.1 使用traverse()展平嵌套数组

  如果你想要将任意嵌套数组结构展平,可以使用traverse()

(
[1, [2, 3, [4, 5]], 6, [7, 8, [9, [10, 11]]]] |
pipe.traverse |
Pipe(list)
)

2.1.2 使用dedup()进行顺序去重

  如果我们需要对包含若干重复值的数组进行去重,且希望保留原始数据的顺序,则可以使用dedup(),其还支持key参数,类似sorted()中的同名参数,实现自定义去重规则:

(
[-1, 0, 0, 0, 1, 2, 3] |
pipe.dedup |
Pipe(list)
) (
[-1, 0, 0, 0, 1, 2, 3] |
# 基于每个元素的绝对值进行去重
pipe.dedup(key=abs) |
Pipe(list)
)

2.1.3 使用filter()进行值过滤

  我们最开始的例子中使用过它,用法就是基于传入的lambda函数对每个元素进行条件判断,并保留结果为True的,与javascript中的filter()方法非常相似:

(
[1, 4, 3, 2, 5, 6, 8] |
# 保留大于5的元素
pipe.filter(lambda x: x > 5) |
Pipe(list)
)

2.1.4 使用groupby()进行分组运算

  这个函数非常实用,其功能相当于管道操作版本的itertools.groupby(),可以帮助我们基于lambda函数运算结果对原始输入数组进行分组,通过groupby()操作后直接得到的结果是分组结果的二元组列表,每个元组的第一个元素是分组标签,第二个元素是分到该组内的各个元素:

  基于此,我们可以衔接很多其他管道操作函数,譬如衔接select()对分组结果进行自定义运算:

2.1.5 使用select()对上一步结果进行自定义遍历运算

  这个函数是pipe()中核心的管道操作函数,通过前面的若干例子也能弄明白,它的功能是基于我们自定义的函数,对上一步的运算结果进行遍历运算。

2.1.6 使用sort()进行排序

  相当于内置函数sorted()的管道操作版本,同样支持keyreverse参数:

  上述内容足以支撑大部分日常操作需求,你也可以在https://github.com/JulienPalard/Pipe中查看pipe的更多功能介绍。


  以上就是本文的全部内容,欢迎在评论区与我进行讨论~

(数据科学学习手札144)使用管道操作符高效书写Python代码的更多相关文章

  1. (数据科学学习手札08)系统聚类法的Python源码实现(与Python,R自带方法进行比较)

    聚类分析是数据挖掘方法中应用非常广泛的一项,而聚类分析根据其大体方法的不同又分为系统聚类和快速聚类,其中系统聚类的优点是可以很直观的得到聚类数不同时具体类中包括了哪些样本,而Python和R中都有直接 ...

  2. (数据科学学习手札40)tensorflow实现LSTM时间序列预测

    一.简介 上一篇中我们较为详细地铺垫了关于RNN及其变种LSTM的一些基本知识,也提到了LSTM在时间序列预测上优越的性能,本篇就将对如何利用tensorflow,在实际时间序列预测任务中搭建模型来完 ...

  3. (数据科学学习手札55)利用ggthemr来美化ggplot2图像

    一.简介 R中的ggplot2是一个非常强大灵活的数据可视化包,熟悉其绘图规则后便可以自由地生成各种可视化图像,但其默认的色彩和样式在很多时候难免有些过于朴素,本文将要介绍的ggthemr包专门针对原 ...

  4. (数据科学学习手札50)基于Python的网络数据采集-selenium篇(上)

    一.简介 接着几个月之前的(数据科学学习手札31)基于Python的网络数据采集(初级篇),在那篇文章中,我们介绍了关于网络爬虫的基础知识(基本的请求库,基本的解析库,CSS,正则表达式等),在那篇文 ...

  5. (数据科学学习手札49)Scala中的模式匹配

    一.简介 Scala中的模式匹配类似Java中的switch语句,且更加稳健,本文就将针对Scala中模式匹配的一些基本实例进行介绍: 二.Scala中的模式匹配 2.1 基本格式 Scala中模式匹 ...

  6. (数据科学学习手札47)基于Python的网络数据采集实战(2)

    一.简介 马上大四了,最近在暑期实习,在数据挖掘的主业之外,也帮助同事做了很多网络数据采集的内容,接下来的数篇文章就将一一罗列出来,来续写几个月前开的这个网络数据采集实战的坑. 二.马蜂窝评论数据采集 ...

  7. (数据科学学习手札44)在Keras中训练多层感知机

    一.简介 Keras是有着自主的一套前端控制语法,后端基于tensorflow和theano的深度学习框架,因为其搭建神经网络简单快捷明了的语法风格,可以帮助使用者更快捷的搭建自己的神经网络,堪称深度 ...

  8. (数据科学学习手札42)folium进阶内容介绍

    一.简介 在上一篇(数据科学学习手札41)中我们了解了folium的基础内容,实际上folium在地理信息可视化上的真正过人之处在于其绘制图像的高度可定制化上,本文就将基于folium官方文档中的一些 ...

  9. (数据科学学习手札36)tensorflow实现MLP

    一.简介 我们在前面的数据科学学习手札34中也介绍过,作为最典型的神经网络,多层感知机(MLP)结构简单且规则,并且在隐层设计的足够完善时,可以拟合任意连续函数,而除了利用前面介绍的sklearn.n ...

随机推荐

  1. Quicker程序实用及获取

    -- 仅代表个人见解 --官方网站:https://getquicker.net/主界面截图   桌面图标截图   3分钟快速体验Quicker  https://getquicker.net/KC/ ...

  2. [GYCTF2020]Ezsqli-1|SQL注入

    1.打开界面之后在输入框进行输入测试,分别输入1.2.3.'等字符,结果如下: 2.看到bool(false)这里我想到了bool注入,因为之前做过这道题:https://www.cnblogs.co ...

  3. 我和Apache DolphinScheduler的缘分

    关于 DolphinScheduler社区 Apache DolphinScheduler(incubator) 于17年在易观数科立项,19年3月开源, 19 年8月进入Apache 孵化器,社区发 ...

  4. ModelBox开发体验:使用YOLOv3做口罩检测

    摘要:本案例将在ModelBox中使用YOLO v3模型,实现一个简单的口罩检测应用 本文分享自华为云社区<ModelBox开发体验Day05开发案例-使用YOLOv3做口罩检测>,作者: ...

  5. 使用JMeter测试.Net5.0,.Net6.0框架下无数据处理的并发情况

    1.   安装JMeter及使用 1.1下载JMeter 登录官方网站找到下载链接进行下载:https://jmeter.apache.org/download_jmeter.cgi 1.2配置环境变 ...

  6. CSP2021-S游记

    前言 年纪大了,脑子乱了,渐渐被低年级吊打了. 大家这么内卷下去,高年级的普遍后悔自己生早了,低年级永远占优势,不只是机会优势,还有能力优势. 快进到改变基因出生国家队算了-- Day0 非常不幸地被 ...

  7. NOI P序列题 (二分)

    题面 题解 --WQS二分 想到这个这题就完了. 赛时没想到这个你就完了. 时间复杂度 O ( n log ⁡ a ) O(n\log a) O(nloga) 不难发现这题有凸性,可以WQS二分. 我 ...

  8. awk5个使用场景

    awk简介 首先要知道awk的使用场景,需了解awk有哪些优势与短板. 关于个人近期学习awk总结其优势: awk对文本的处理运算效率同比其他工具效率高很多(比shell的for循环高10倍以上,运算 ...

  9. django_day09_项目相关

    django_day09_项目相关 展示数据: 给模板一个querySet对象列表,循环出对象列表obj 普通字段 obj.字段名 ----> 数据库中的数据 外键 obj.外键 ------- ...

  10. 第十三章 k8s的GUI资源管理插件--dashboard

    1.部署Kubernetes-dashboard 1.1 准备dashboard镜像 在10.4.7.200上操作 [root@hdss7-200 ~]# docker pull k8scn/kube ...