并查集和kruskal最小生成树算法
并查集 先定义
int f[10100];//定义祖先
之后初始化
for(int i=1;i<=n;++i)
f[i]=i; //初始化
下面为并查集操作
int find(int x)//int 类型 查找
{
return f[x]==x?f[x]:f[x]=find(f[x]);//三目运算符查找
//如果f[x]==x 返回f[x] 否则返回f[x]=find(f[x]);
}
void unionn(int a,int b)//void 类型 连接
{
a=find(a),b=find(b);//查找两点的祖先,覆盖
f[b]=a;//更改祖先,连接两点
}
kruskal算法就是运用了并查集,但它真正耗时的地方是sort 排序
代码

1 #include<bits/stdc++.h>
2 using namespace std;
3 struct edge
4 {
5 int u,v,w;//u起点 v 终点 w 边权 因为要排序,所以不需要nxt
6 bool operator <(const edge b) const//重载运算符,用于sort(可能更快,不确定),不会,百度搜搜
7 {
8 return w<b.w;//小的在前
9 }
10 };
11 edge e[100010];//建边
12 int f[110];//记录每个点的祖先
13 int n,k,cnt,total,cot;//n 点数 k 关系数 cnt,cot 计数器 total 记录最小生成树的边权和
14 void add(int,int,int);//加边函数声明
15 int find(int);//并查集查找函数声明
16 void unionn(int,int);//并查集合并函数声明
17 int main()
18 {
19 scanf("%d%d",&n,&k);
20 for(int i=1;i<=n;++i) f[i]=i;//初始化
21 for(int u,v,w,i=1;i<=k;++i)
22 {
23 scanf("%d%d%d",&u,&v,&w);
24 add(u,v,w);//加边
25 add(v,u,w);//加边 无向图
26 }
27 sort(e+1,e+cnt+1);//排序 重载运算符排序
28 for(int i=1;i<=cnt;++i)//根据边权从小到大找边判断
29 {
30 int u=e[i].u,v=e[i].v,w=e[i].w;
31 if(find(u)!=find(v))//判断两点是否连接
32 {
33 total+=w;//记录边权和
34 unionn(u,v);//连接,避免后面循环误判
35 cot++;//记录找了几条边
36 }
37 if(cot==n-1) break;//找到n-1条边就退出
38 }
39 printf("%d",total);//输出
40 return 0;//结束
41 }
42 void add(int u,int v,int w)//建边
43 {
44 e[++cnt].u=u;
45 e[cnt].v=v;
46 e[cnt].w=w;
47 }
48 int find(int x)
49 {
50 return f[x]==x?f[x]:f[x]=find(f[x]);//三目运算符查找
51 }
52 void unionn(int a,int b)
53 {
54 a=find(a),b=find(b);
55 if(a!=b) f[b]=a;//加这个判断,有些题会在这里“做文章”
56 }
并查集和kruskal最小生成树算法的更多相关文章
- Kruskal 最小生成树算法
对于一个给定的连通的无向图 G = (V, E),希望找到一个无回路的子集 T,T 是 E 的子集,它连接了所有的顶点,且其权值之和为最小. 因为 T 无回路且连接所有的顶点,所以它必然是一棵树,称为 ...
- [算法系列之二十七]Kruskal最小生成树算法
简单介绍 求最小生成树一共同拥有两种算法,一个是就是本文所说的Kruskal算法,还有一个就是Prime算法. 在具体解说Kruskal最小生成树算法之前,让我们先回想一下什么是最小生成树. 我们有一 ...
- [算法] kruskal最小生成树算法
#include <stdio.h> #include <stdlib.h> #define MAX 100 int N, M; struct Edge { int u,v; ...
- poj1861 network(并查集+kruskal最小生成树
题目地址:http://poj.org/problem?id=1861 题意:输入点数n和边数n,m组边(点a,点b,a到b的权值).要求单条边权值的最大值最小,其他无所谓(所以多解:(.输出单条边最 ...
- 贪心算法(2)-Kruskal最小生成树
什么是最小生成树? 生成树是相对图来说的,一个图的生成树是一个树并把图的所有顶点连接在一起.一个图可以有许多不同的生成树.一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n ...
- LeetCode刷题总结-排序、并查集和图篇
本文介绍LeetCode上有关排序.并查集和图的算法题,推荐刷题总数为15道.具体考点分析如下图: 一.排序 1.数组问题 题号:164. 最大间距,难度困难 题号:324. 摆动排序 II,难度中等 ...
- 最小生成树算法(Prim,Kruskal)
边赋以权值的图称为网或带权图,带权图的生成树也是带权的,生成树T各边的权值总和称为该树的权. 最小生成树(MST):权值最小的生成树. 生成树和最小生成树的应用:要连通n个城市需要n-1条边线路.可以 ...
- 无向带权图的最小生成树算法——Prim及Kruskal算法思路
边赋以权值的图称为网或带权图,带权图的生成树也是带权的,生成树T各边的权值总和称为该树的权. 最小生成树(MST):权值最小的生成树. 生成树和最小生成树的应用:要连通n个城市需要n-1条边线路.可以 ...
- 最小生成树之克鲁斯卡尔(Kruskal)算法
学习最小生成树算法之前我们先来了解下 下面这些概念: 树(Tree):如果一个无向连通图中不存在回路,则这种图称为树. 生成树 (Spanning Tree):无向连通图G的一个子图如果是一颗包含G的 ...
随机推荐
- Java操作Hadoop、Map、Reduce合成
原始数据: Map阶段 1.每次读一行数据, 2.拆分每行数据, 3.每个单词碰到一次写个1 <0, "hello tom"> <10, "hello ...
- CRM项目的整理-----第二篇
1.项目的登录 1.1 app创建二级路由 2.登录页面 http://www.jq22.com/
- 第一个Python程序 | 机选彩票号码+爬取最新开奖号码
(机选彩票号码+爬取最新开奖号码 | 2021-04-21) 学习记录,好记不如烂笔头 这个程序作用是<机选三种彩票类型的号码> 程序内包含功能有如下: 自动获取最新的三种彩票的开奖号码 ...
- 项目:Six Sigma
六西格玛管理(Six Sigma Management)是20世纪80年代末首先在美国摩托罗拉公司发展起来的一种新型管理方式.推行六西格玛管理就是通过设计和监控过程,将可能的失误减少到最低限度,从而使 ...
- 流,用声明性的方式处理数据集 - 读《Java 8实战》
引入流 Stream API的代码 声明性 更简洁,更易读 可复合 更灵活 可并行 性能更好 流是什么? 它允许以声明方式处理数据集合 遍历数据集的高级迭代器 透明地并行处理 简短定义:从支持数据处理 ...
- 645. Set Mismatch - LeetCode
Question 645. Set Mismatch Solution 思路: 遍历每个数字,然后将其应该出现的位置上的数字变为其相反数,这样如果我们再变为其相反数之前已经成负数了,说明该数字是重复数 ...
- Android.mk编译App源码
在Andriod源码环境编译APP主要考虑如何引入第三方jar包和arr包的问题,初次尝试,步步是坑,这里给出一个模板: LOCAL_PATH := $(call my-dir) include $( ...
- CentOS搭建BWAPP靶场并安装docker
为了不触碰国家安全网络红线作为技术人员我们尽可能的要在自己本机在上面创建自己的靶场: 在centos上面搭建靶场看似非常简单短短几行代码,需要注意以下几个点:(1.在docker上搭建 2.端口号 ...
- .NET 6.0.6 和 .NET Core 3.1.26、Visual Studio 2022 17.2 和 17.3 Preview 2 和 .NET 7.0 Preview 5 同时发布
Microsoft 昨天发布了适用于 .NET 6.0.6 和 .NET Core 3.1.26.NuGet.Visual Studio 2019 和 Visual Studio 2022 17.2 ...
- 文件上传漏洞靶场分析 UPLOAD_LABS
文件上传漏洞靶场(作者前言) 文件上传漏洞 产生原理 PASS 1) function checkFile() { var file = document.getElementsByName('upl ...