并查集 先定义

int f[10100];//定义祖先 

之后初始化

for(int i=1;i<=n;++i)
f[i]=i; //初始化

下面为并查集操作

int find(int x)//int 类型 查找
{
return f[x]==x?f[x]:f[x]=find(f[x]);//三目运算符查找
//如果f[x]==x 返回f[x] 否则返回f[x]=find(f[x]);
}
void unionn(int a,int b)//void 类型 连接
{
a=find(a),b=find(b);//查找两点的祖先,覆盖
f[b]=a;//更改祖先,连接两点
}

kruskal算法就是运用了并查集,但它真正耗时的地方是sort 排序

代码

 1 #include<bits/stdc++.h>
2 using namespace std;
3 struct edge
4 {
5 int u,v,w;//u起点 v 终点 w 边权 因为要排序,所以不需要nxt
6 bool operator <(const edge b) const//重载运算符,用于sort(可能更快,不确定),不会,百度搜搜
7 {
8 return w<b.w;//小的在前
9 }
10 };
11 edge e[100010];//建边
12 int f[110];//记录每个点的祖先
13 int n,k,cnt,total,cot;//n 点数 k 关系数 cnt,cot 计数器 total 记录最小生成树的边权和
14 void add(int,int,int);//加边函数声明
15 int find(int);//并查集查找函数声明
16 void unionn(int,int);//并查集合并函数声明
17 int main()
18 {
19 scanf("%d%d",&n,&k);
20 for(int i=1;i<=n;++i) f[i]=i;//初始化
21 for(int u,v,w,i=1;i<=k;++i)
22 {
23 scanf("%d%d%d",&u,&v,&w);
24 add(u,v,w);//加边
25 add(v,u,w);//加边 无向图
26 }
27 sort(e+1,e+cnt+1);//排序 重载运算符排序
28 for(int i=1;i<=cnt;++i)//根据边权从小到大找边判断
29 {
30 int u=e[i].u,v=e[i].v,w=e[i].w;
31 if(find(u)!=find(v))//判断两点是否连接
32 {
33 total+=w;//记录边权和
34 unionn(u,v);//连接,避免后面循环误判
35 cot++;//记录找了几条边
36 }
37 if(cot==n-1) break;//找到n-1条边就退出
38 }
39 printf("%d",total);//输出
40 return 0;//结束
41 }
42 void add(int u,int v,int w)//建边
43 {
44 e[++cnt].u=u;
45 e[cnt].v=v;
46 e[cnt].w=w;
47 }
48 int find(int x)
49 {
50 return f[x]==x?f[x]:f[x]=find(f[x]);//三目运算符查找
51 }
52 void unionn(int a,int b)
53 {
54 a=find(a),b=find(b);
55 if(a!=b) f[b]=a;//加这个判断,有些题会在这里“做文章”
56 }

并查集和kruskal最小生成树算法的更多相关文章

  1. Kruskal 最小生成树算法

    对于一个给定的连通的无向图 G = (V, E),希望找到一个无回路的子集 T,T 是 E 的子集,它连接了所有的顶点,且其权值之和为最小. 因为 T 无回路且连接所有的顶点,所以它必然是一棵树,称为 ...

  2. [算法系列之二十七]Kruskal最小生成树算法

    简单介绍 求最小生成树一共同拥有两种算法,一个是就是本文所说的Kruskal算法,还有一个就是Prime算法. 在具体解说Kruskal最小生成树算法之前,让我们先回想一下什么是最小生成树. 我们有一 ...

  3. [算法] kruskal最小生成树算法

    #include <stdio.h> #include <stdlib.h> #define MAX 100 int N, M; struct Edge { int u,v; ...

  4. poj1861 network(并查集+kruskal最小生成树

    题目地址:http://poj.org/problem?id=1861 题意:输入点数n和边数n,m组边(点a,点b,a到b的权值).要求单条边权值的最大值最小,其他无所谓(所以多解:(.输出单条边最 ...

  5. 贪心算法(2)-Kruskal最小生成树

    什么是最小生成树? 生成树是相对图来说的,一个图的生成树是一个树并把图的所有顶点连接在一起.一个图可以有许多不同的生成树.一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n ...

  6. LeetCode刷题总结-排序、并查集和图篇

    本文介绍LeetCode上有关排序.并查集和图的算法题,推荐刷题总数为15道.具体考点分析如下图: 一.排序 1.数组问题 题号:164. 最大间距,难度困难 题号:324. 摆动排序 II,难度中等 ...

  7. 最小生成树算法(Prim,Kruskal)

    边赋以权值的图称为网或带权图,带权图的生成树也是带权的,生成树T各边的权值总和称为该树的权. 最小生成树(MST):权值最小的生成树. 生成树和最小生成树的应用:要连通n个城市需要n-1条边线路.可以 ...

  8. 无向带权图的最小生成树算法——Prim及Kruskal算法思路

    边赋以权值的图称为网或带权图,带权图的生成树也是带权的,生成树T各边的权值总和称为该树的权. 最小生成树(MST):权值最小的生成树. 生成树和最小生成树的应用:要连通n个城市需要n-1条边线路.可以 ...

  9. 最小生成树之克鲁斯卡尔(Kruskal)算法

    学习最小生成树算法之前我们先来了解下 下面这些概念: 树(Tree):如果一个无向连通图中不存在回路,则这种图称为树. 生成树 (Spanning Tree):无向连通图G的一个子图如果是一颗包含G的 ...

随机推荐

  1. UDP协议,多道技术,进程,同步与异步,阻塞与非阻塞

    UDP协议 简介 UDP叫做用户数据报协议,是OSI七层参考模型中传输层使用的协议,他提供的是不可靠传输,既它在传输过程 中不保证数据的完整性! 端口号 UDP使用IP地址和端口号进行标识,以此将数据 ...

  2. 1903021121-刘明伟 实验一 19信计JAVA—Markdown排版学习

    项目 内容 班级博客链接 19信计班(本) 作业要求链接 实验一 课程学习目标 学习使用Markdown排版 这个作业帮助我们实现了什么学习目标 学会使用Markdown排版 任务一:在博客园平台注册 ...

  3. 使用DSVPN解决分支网络出口为ADSL场景下的内网互通

    背景 最近接到一个项目是一家机构总部与多个分支之间的内网互通,总部具有固定ip,分部是使用adsl动态获取的不固定公网ip,由于两端互联网ip不固定所以不能使用传统的GRE技术来实现,所以最后经过评估 ...

  4. (原创)[C#] MEF 主程序与插件加载不同版本的DLL

    一.前言 MEF(Managed Extensibility Framework),是轻量级的插件框架.使用简单,功能强大.详细介绍见MSDN,本文不再赘述. 在使用MEF时,会遇到这样一种场景: 主 ...

  5. Vue项目中的接口进阶使用

    创建services文件夹 1.文件夹apis.index.request的三个文件. 2.apis文件放接口 export const apis = { checkDeviceNo: '/api/c ...

  6. ptorch常用代码梯度篇(梯度裁剪、梯度累积、冻结预训练层等)

    梯度裁剪(Gradient Clipping) 在训练比较深或者循环神经网络模型的过程中,我们有可能发生梯度爆炸的情况,这样会导致我们模型训练无法收敛. 我们可以采取一个简单的策略来避免梯度的爆炸,那 ...

  7. 一文带你搞懂 SSR

    欲语还休,欲语还休,却道天凉好个秋 ---- <丑奴儿·书博山道中壁>辛弃疾 什么是 SSR ShadowsocksR?阴阳师?FGO? Server-side rendering (SS ...

  8. 介绍python和库文件管理

    一.Python 特点 1.易于学习:Python有相对较少的关键字,结构简单,和一个明确定义的语法,学习起来更加简单. 2.易于阅读:Python代码定义的更清晰. 3.易于维护:Python的成功 ...

  9. 2021.05.03【NOIP提高B组】模拟 总结

    比较水的一场比赛,却不能 AK T1 有 \(n\) 次,每次给 \(A_i,B_i\) 问以 \(i\) 结尾的 \(A,B\) 的匹配中最大和的最小值 问最大和的最小值,却不用二分. 如果暴力排序 ...

  10. C# 使用SpecFlow创建BDD测试用例

    将自然语言编写的测试用例转换为可执行的测试,可以大大降低需求与开发之间的沟通成本,这是BDD(行为驱动开发)希望达到的效果.SpecFlow是.Net平台的BDD工具,可以帮助我们创建面向BDD的测试 ...