1前言

本节主要是让人用矢量化编程代替效率比较低的for循环。

在前一节的Sparse Autoencoder练习中已经实现了矢量化编程,所以与前一节的区别只在于本节训练集是用MINIST数据集,而上一节训练集用的是从10张图片中随机选择的8*8的10000张小图块。综上,只需要在前一节的代码中稍微修改一下就可。

2练习步骤

1.下载数据集及UFLDL提供的加载数据集的函数,并把他们和上节程序放在同一文件夹中。要注意的是UFLDL提供的加载数据集的函数中程序用的数据集名称是train-images-idx3-ubyte,要把他改为train-images.idx3-ubyte。可用如下程序检查MINIST数据集是否可加载成功。

% Change the filenames if you've saved the files under different names
% On some platforms, the files might be saved as
% train-images.idx3-ubyte / train-labels.idx1-ubyte
images = loadMNISTImages('train-images.idx3-ubyte');
labels = loadMNISTLabels('train-labels.idx1-ubyte'); % We are using display_network from the autoencoder code
display_network(images(:,1:100)); % Show the first 100 images
disp(labels(1:10));

  运行之后得到如下结果就表示已经可以正确加载:

2.矢量化Sparse Autoencoder程序,即上一节程序,因上节已实现,故此步骤可免去。

3.学习手写数字库的特征。

前言中已经说了,本步只需要在上节中稍微修改一下即可,具体如下:

①修改初始参数,把train.m文件中把step0里面的各个参数调整成这样:

visibleSize = 28*28;   % number of input units 输入层单元数
hiddenSize = 196; % number of hidden units隐藏层单元数
sparsityParam = 0.1; % desired average activation of the hidden units.稀疏值
% (This was denoted by the Greek alphabet rho, which looks like a lower-case "p",
% in the lecture notes).
lambda = 3e-3; % weight decay parameter 权重衰减系数
beta = 3; % weight of sparsity penalty term稀疏值惩罚项的权重

②修改训练集,把step1里面的patches的产生改为:

%% STEP 1: Implement sampleIMAGES  第1步:实现图片采样
%
% 实现图片采样后,函数display_network从训练集中随机显示200张
% After implementing sampleIMAGES, the display_network command should
% display a random sample of 200 patches from the dataset
images = loadMNISTImages('train-images.idx3-ubyte');
patches = images(:,1:10000); % patches = sampleIMAGES;
display_network(patches(:,randi(size(patches,2),200,1)),8);%从10000张中随机选择200张显示 % Obtain random parameters theta初始化参数向量theta
theta = initializeParameters(hiddenSize, visibleSize);

 4.其他一切不变,但是为了提高效率,可把train.m中的 STEP 3: Gradient Checking这步注释掉,因为在本例中训练集更大,梯度检查会比较慢。然后运行train.m可得到可视化结果为:

Elapsed time is 365.887537 seconds.

……

Deep Learning 2_深度学习UFLDL教程:矢量化编程(斯坦福大学深度学习教程)的更多相关文章

  1. Deep Learning 6_深度学习UFLDL教程:Softmax Regression_Exercise(斯坦福大学深度学习教程)

    前言 练习内容:Exercise:Softmax Regression.完成MNIST手写数字数据库中手写数字的识别,即:用6万个已标注数据(即:6万张28*28的图像块(patches)),作训练数 ...

  2. Deep Learning 1_深度学习UFLDL教程:Sparse Autoencoder练习(斯坦福大学深度学习教程)

    1前言 本人写技术博客的目的,其实是感觉好多东西,很长一段时间不动就会忘记了,为了加深学习记忆以及方便以后可能忘记后能很快回忆起自己曾经学过的东西. 首先,在网上找了一些资料,看见介绍说UFLDL很不 ...

  3. Deep Learning 19_深度学习UFLDL教程:Convolutional Neural Network_Exercise(斯坦福大学深度学习教程)

    理论知识:Optimization: Stochastic Gradient Descent和Convolutional Neural Network CNN卷积神经网络推导和实现.Deep lear ...

  4. Deep Learning 13_深度学习UFLDL教程:Independent Component Analysis_Exercise(斯坦福大学深度学习教程)

    前言 理论知识:UFLDL教程.Deep learning:三十三(ICA模型).Deep learning:三十九(ICA模型练习) 实验环境:win7, matlab2015b,16G内存,2T机 ...

  5. Deep Learning 12_深度学习UFLDL教程:Sparse Coding_exercise(斯坦福大学深度学习教程)

    前言 理论知识:UFLDL教程.Deep learning:二十六(Sparse coding简单理解).Deep learning:二十七(Sparse coding中关于矩阵的范数求导).Deep ...

  6. Deep Learning 11_深度学习UFLDL教程:数据预处理(斯坦福大学深度学习教程)

    理论知识:UFLDL数据预处理和http://www.cnblogs.com/tornadomeet/archive/2013/04/20/3033149.html 数据预处理是深度学习中非常重要的一 ...

  7. Deep Learning 10_深度学习UFLDL教程:Convolution and Pooling_exercise(斯坦福大学深度学习教程)

    前言 理论知识:UFLDL教程和http://www.cnblogs.com/tornadomeet/archive/2013/04/09/3009830.html 实验环境:win7, matlab ...

  8. Deep Learning 9_深度学习UFLDL教程:linear decoder_exercise(斯坦福大学深度学习教程)

    前言 实验内容:Exercise:Learning color features with Sparse Autoencoders.即:利用线性解码器,从100000张8*8的RGB图像块中提取颜色特 ...

  9. Deep Learning 8_深度学习UFLDL教程:Stacked Autocoders and Implement deep networks for digit classification_Exercise(斯坦福大学深度学习教程)

    前言 1.理论知识:UFLDL教程.Deep learning:十六(deep networks) 2.实验环境:win7, matlab2015b,16G内存,2T硬盘 3.实验内容:Exercis ...

随机推荐

  1. 关于Matrix的深入理解(对应值的功能)

    matrix是css3里面transform的一个集成表达式,它是以一个矩阵的方式来计算 transform:translate(apx,bpx)位移 transform: scale(a,b) 放缩 ...

  2. Gradle--ubuntu

    在Ubuntu安装Gradle也是很简单.切记请勿使用apt-get安装Gradle.因为Ubuntu源的Gradle实在太旧.我用的搜狐的源,竟然是2011年. 下面是安装步骤: 1.在官网下载最新 ...

  3. C++ Primer Pluse_8_课后题

    #include <iostream> #include <string> #include<cstring> using namespace std; void ...

  4. 一个编程小白,如何入门APP软件开发领域?

    近些年,互联网创业火得不得了!一时间,满世界都在招做App软件开发的专业人员.从大众角度来看,学编程,写代码,是一件非常困难的事情.但是,App开发人员的工资那么诱人,让很多小白也跃跃欲试想学一下.那 ...

  5. 两种方法解决tomcat的 Failed to initialize end point associated with ProtocolHandler ["http-apr-8080"]

    出现这种原因主要是8080端口被占用了. 解决1: 打开任务管理器看看里面有没有javaw的线程,把它关了再重新启动tomcat看看. 解决2: 修改tomcat /conf /server.xml ...

  6. Eclipse新增Web项目

    [前置条件] 1. 电脑已安装JDK1.6,并成功配置环境变量 2. 电脑已存在tomcat6.0包,无需安装 [操作步骤] 1. 为eclipse配置tomcat6.0 (1)eclipse菜单栏, ...

  7. Java生成和操作Excel文件

    JAVA EXCEL API:是一开放源码项目,通过它Java开发人员可以读取Excel文件的内容.创建新的Excel文件.更新已经存在的Excel文件.使用该API非Windows操作系统也可以通过 ...

  8. 简明python教程 --C++程序员的视角(四):容器类型(字符串、元组、列表、字典)和参考

    数据结构简介 Python定义的类型(或对象)层次结构在概念上可以划分为四种类别:简单类型.容器类型.代码类型 和内部类型. 可以将 PyObject 类之下的所有 Python 类划分为 Pytho ...

  9. Leetcode: Non-overlapping Intervals

    Given a collection of intervals, find the minimum number of intervals you need to remove to make the ...

  10. Leetcode: Reconstruct Original Digits from English

    Given a non-empty string containing an out-of-order English representation of digits 0-9, output the ...