1前言

本节主要是让人用矢量化编程代替效率比较低的for循环。

在前一节的Sparse Autoencoder练习中已经实现了矢量化编程,所以与前一节的区别只在于本节训练集是用MINIST数据集,而上一节训练集用的是从10张图片中随机选择的8*8的10000张小图块。综上,只需要在前一节的代码中稍微修改一下就可。

2练习步骤

1.下载数据集及UFLDL提供的加载数据集的函数,并把他们和上节程序放在同一文件夹中。要注意的是UFLDL提供的加载数据集的函数中程序用的数据集名称是train-images-idx3-ubyte,要把他改为train-images.idx3-ubyte。可用如下程序检查MINIST数据集是否可加载成功。

% Change the filenames if you've saved the files under different names
% On some platforms, the files might be saved as
% train-images.idx3-ubyte / train-labels.idx1-ubyte
images = loadMNISTImages('train-images.idx3-ubyte');
labels = loadMNISTLabels('train-labels.idx1-ubyte'); % We are using display_network from the autoencoder code
display_network(images(:,1:100)); % Show the first 100 images
disp(labels(1:10));

  运行之后得到如下结果就表示已经可以正确加载:

2.矢量化Sparse Autoencoder程序,即上一节程序,因上节已实现,故此步骤可免去。

3.学习手写数字库的特征。

前言中已经说了,本步只需要在上节中稍微修改一下即可,具体如下:

①修改初始参数,把train.m文件中把step0里面的各个参数调整成这样:

visibleSize = 28*28;   % number of input units 输入层单元数
hiddenSize = 196; % number of hidden units隐藏层单元数
sparsityParam = 0.1; % desired average activation of the hidden units.稀疏值
% (This was denoted by the Greek alphabet rho, which looks like a lower-case "p",
% in the lecture notes).
lambda = 3e-3; % weight decay parameter 权重衰减系数
beta = 3; % weight of sparsity penalty term稀疏值惩罚项的权重

②修改训练集,把step1里面的patches的产生改为:

%% STEP 1: Implement sampleIMAGES  第1步:实现图片采样
%
% 实现图片采样后,函数display_network从训练集中随机显示200张
% After implementing sampleIMAGES, the display_network command should
% display a random sample of 200 patches from the dataset
images = loadMNISTImages('train-images.idx3-ubyte');
patches = images(:,1:10000); % patches = sampleIMAGES;
display_network(patches(:,randi(size(patches,2),200,1)),8);%从10000张中随机选择200张显示 % Obtain random parameters theta初始化参数向量theta
theta = initializeParameters(hiddenSize, visibleSize);

 4.其他一切不变,但是为了提高效率,可把train.m中的 STEP 3: Gradient Checking这步注释掉,因为在本例中训练集更大,梯度检查会比较慢。然后运行train.m可得到可视化结果为:

Elapsed time is 365.887537 seconds.

……

Deep Learning 2_深度学习UFLDL教程:矢量化编程(斯坦福大学深度学习教程)的更多相关文章

  1. Deep Learning 6_深度学习UFLDL教程:Softmax Regression_Exercise(斯坦福大学深度学习教程)

    前言 练习内容:Exercise:Softmax Regression.完成MNIST手写数字数据库中手写数字的识别,即:用6万个已标注数据(即:6万张28*28的图像块(patches)),作训练数 ...

  2. Deep Learning 1_深度学习UFLDL教程:Sparse Autoencoder练习(斯坦福大学深度学习教程)

    1前言 本人写技术博客的目的,其实是感觉好多东西,很长一段时间不动就会忘记了,为了加深学习记忆以及方便以后可能忘记后能很快回忆起自己曾经学过的东西. 首先,在网上找了一些资料,看见介绍说UFLDL很不 ...

  3. Deep Learning 19_深度学习UFLDL教程:Convolutional Neural Network_Exercise(斯坦福大学深度学习教程)

    理论知识:Optimization: Stochastic Gradient Descent和Convolutional Neural Network CNN卷积神经网络推导和实现.Deep lear ...

  4. Deep Learning 13_深度学习UFLDL教程:Independent Component Analysis_Exercise(斯坦福大学深度学习教程)

    前言 理论知识:UFLDL教程.Deep learning:三十三(ICA模型).Deep learning:三十九(ICA模型练习) 实验环境:win7, matlab2015b,16G内存,2T机 ...

  5. Deep Learning 12_深度学习UFLDL教程:Sparse Coding_exercise(斯坦福大学深度学习教程)

    前言 理论知识:UFLDL教程.Deep learning:二十六(Sparse coding简单理解).Deep learning:二十七(Sparse coding中关于矩阵的范数求导).Deep ...

  6. Deep Learning 11_深度学习UFLDL教程:数据预处理(斯坦福大学深度学习教程)

    理论知识:UFLDL数据预处理和http://www.cnblogs.com/tornadomeet/archive/2013/04/20/3033149.html 数据预处理是深度学习中非常重要的一 ...

  7. Deep Learning 10_深度学习UFLDL教程:Convolution and Pooling_exercise(斯坦福大学深度学习教程)

    前言 理论知识:UFLDL教程和http://www.cnblogs.com/tornadomeet/archive/2013/04/09/3009830.html 实验环境:win7, matlab ...

  8. Deep Learning 9_深度学习UFLDL教程:linear decoder_exercise(斯坦福大学深度学习教程)

    前言 实验内容:Exercise:Learning color features with Sparse Autoencoders.即:利用线性解码器,从100000张8*8的RGB图像块中提取颜色特 ...

  9. Deep Learning 8_深度学习UFLDL教程:Stacked Autocoders and Implement deep networks for digit classification_Exercise(斯坦福大学深度学习教程)

    前言 1.理论知识:UFLDL教程.Deep learning:十六(deep networks) 2.实验环境:win7, matlab2015b,16G内存,2T硬盘 3.实验内容:Exercis ...

随机推荐

  1. C++ 一个统计文件夹下所有代码文件行数的小工具

    // CodeLines.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <Commdlg.h> #inclu ...

  2. Java基础总结(备考)

    ps1:本文内容只涉及基础中的重点,大神直接无视路过. ps2:部分内容可能不太详细,有疑问请留言. ps3:全文自己总结(部分知识百度),内容可能有些杂,可能不太全. 如有雷同,算我抄你,同时欢迎大 ...

  3. maven说

    maven打包命令:mvn assembly:assembly 打包成jar包需要修改配置把unpack改成false文件在: C:\Users\Administrator\.m2\repositor ...

  4. Maven-006-手动部署第三方构件至 nexus 私服

    某些 Java 构件因许可证因素,无法公开的部署到公共仓库中:或者,一些小型的开源项目(例如 SourceForge.GitHub 中的一些项目),没有将构件分发到中央仓库中,也没有维护自己的仓库,因 ...

  5. Maven应用

    Maven进行项目管理很方便,下面介绍一下学习maven中的笔记.我是在Windows上运行的          有些知识点没有试,只是收集转载,很可能存在错误 1.安装 解压缩之后,配置环境变量MA ...

  6. Python之路-python(常用模块学习)

    模块介绍 time &datetime模块 random os sys shutil shelve xml处理 yaml处理 configparser hashlib re正则表达式 1.模块 ...

  7. Linux中的软硬链接

    说到Linux中的软硬链接,就必须谈一下Linux的文件系统的组成的重要部分iNode和block. 首先是iNode,先用一张图了解一下iNode在Linux文件系统中的地位: Linux中的文件的 ...

  8. Matlab中图片保存的5种方法

    matlab的绘图和可视化能力是不用多说的,可以说在业内是家喻户晓的. Matlab提供了丰富的绘图函数,比如ez**系类的简易绘图函数,surf.mesh系类的数值绘图函数等几十个.另外其他专业工具 ...

  9. C++复现经典游戏——扫雷

    国庆小长假,当大家都去看人山人海的时候,我独自一人狂码代码.这两天想要实现的内容是Windows上的一个经典游戏——扫雷.相信90后和一些上班族对此并不陌生.然而,从win8开始,扫雷就不再是Wind ...

  10. 分享大家一个背景为下雪的JQuery

    <html><head> <meta charset="utf-8"> <meta content="IE=edge,chrom ...