Balancing Act
 

Description

Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the tree yields a forest: a collection of one or more trees. Define the balance of a node to be the size of the largest tree in the forest T created by deleting that node from T. 
For example, consider the tree: 

Deleting node 4 yields two trees whose member nodes are {5} and {1,2,3,6,7}. The larger of these two trees has five nodes, thus the balance of node 4 is five. Deleting node 1 yields a forest of three trees of equal size: {2,6}, {3,7}, and {4,5}. Each of these trees has two nodes, so the balance of node 1 is two.

For each input tree, calculate the node that has the minimum balance. If multiple nodes have equal balance, output the one with the lowest number.

Input

The first line of input contains a single integer t (1 <= t <= 20), the number of test cases. The first line of each test case contains an integer N (1 <= N <= 20,000), the number of congruence. The next N-1 lines each contains two space-separated node numbers that are the endpoints of an edge in the tree. No edge will be listed twice, and all edges will be listed.
 

Output

For each test case, print a line containing two integers, the number of the node with minimum balance and the balance of that node.
 

Sample Input

1
7
2 6
1 2
1 4
4 5
3 7
3 1

Sample Output

1 2

题意:

  给你n点的树

  让你删去一个点,剩下的 子树中节点数最多的就是删除这个点的 价值

  求删除哪个点 价值最小就是重心 

题解:

  来来来

  认识一下什么重心

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
const int N = 1e5+, M = 1e2+, mod = 1e9+, inf = 1e9+;
typedef long long ll; vector<int > G[N];
int T,n,siz[N],mx,mx1;
void dfs(int u,int fa) {
siz[u] = ;
int ret = ;
for(int i=;i<G[u].size();i++) {
int to = G[u][i];
if(to == fa) continue;
dfs(to,u);
siz[u] += siz[to];
ret = max(ret , siz[to]);
}
if(u!=) ret = max(ret , n - siz[u]);
if(ret <= mx) {
mx1 = u;
mx = ret;
}
}
int main()
{
scanf("%d",&T);
while(T--) {
scanf("%d",&n);
for(int i=;i<N;i++) G[i].clear();
for(int i=;i<n;i++) {
int a,b;
scanf("%d%d",&a,&b);
G[a].push_back(b);
G[b].push_back(a);
}
mx = inf;
dfs(,-);
printf("%d %d\n",mx1 , mx);
}
}

POJ 1655 Balancing Act 树的重心的更多相关文章

  1. POJ 1655 - Balancing Act 树型DP

    这题和POJ 3107 - Godfather异曲同工...http://blog.csdn.net/kk303/article/details/9387251 Program: #include&l ...

  2. POJ.1655 Balancing Act POJ.3107 Godfather(树的重心)

    关于树的重心:百度百科 有关博客:http://blog.csdn.net/acdreamers/article/details/16905653 1.Balancing Act To POJ.165 ...

  3. poj 1655 Balancing Act 求树的重心【树形dp】

    poj 1655 Balancing Act 题意:求树的重心且编号数最小 一棵树的重心是指一个结点u,去掉它后剩下的子树结点数最少. (图片来源: PatrickZhou 感谢博主) 看上面的图就好 ...

  4. POJ 1655 Balancing Act【树的重心】

    Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14251   Accepted: 6027 De ...

  5. POJ 1655.Balancing Act 树形dp 树的重心

    Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14550   Accepted: 6173 De ...

  6. poj 1655 Balancing Act(找树的重心)

    Balancing Act POJ - 1655 题意:给定一棵树,求树的重心的编号以及重心删除后得到的最大子树的节点个数size,如果size相同就选取编号最小的. /* 找树的重心可以用树形dp或 ...

  7. POJ 1655 Balancing Act&&POJ 3107 Godfather(树的重心)

    树的重心的定义是: 一个点的所有子树中节点数最大的子树节点数最小. 这句话可能说起来比较绕,但是其实想想他的字面意思也就是找到最平衡的那个点. POJ 1655 题目大意: 直接给你一棵树,让你求树的 ...

  8. POJ 1655 - Balancing Act - [DFS][树的重心]

    链接:http://poj.org/problem?id=1655 Time Limit: 1000MS Memory Limit: 65536K Description Consider a tre ...

  9. POJ 1655 Balancing Act【树的重心模板题】

    传送门:http://poj.org/problem?id=1655 题意:有T组数据,求出每组数据所构成的树的重心,输出这个树的重心的编号,并且输出重心删除后得到的最大子树的节点个数,如果个数相同, ...

随机推荐

  1. 渲染物体到一张UITexture上

    把这个脚本挂到一个Camera上 using UnityEngine; using System.Collections; [RequireComponent(typeof(Camera))] pub ...

  2. angular.js初探

    2015年7月27日 22:26:35 星期一 用在我论坛里的小栗子: 先列出来一级回帖, 点击帖子前边的"查看回复"按钮无刷新的去请求该帖子的所有回复 首先要引用js文件, 我这 ...

  3. 整数划分问题-解法汇总(暂有DP-递归)

    整数划分问题是一个锻炼组合数学,递归以及动态规划很好的例子,虽然问题看似简单,但是其中玄机万千,有人转化成为背包问题,有人用生成函数解,有人以此作为企业面试题目,可见这种问题的认可度还是很高的. 整数 ...

  4. (EM算法)The EM Algorithm

    http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006936.html http://blog.sina.com.cn/s/blog_a7da ...

  5. 解决sqlite3_key的问题

    报错内容显示如下: ld: warning: ignoring file /Users/rowling/Library/Developer/Xcode/DerivedData/zhinengbango ...

  6. [Android Pro] 通过包名启动应用

    Intent intent = packageManager.getLaunchIntentForPackage(WEIXIN_PKGNAME); intent.setFlags(Intent.FLA ...

  7. iOS高效调试

    写代码难免出现bug. 储备些调试技能绝对能够提高你的工作效率,让bug无所遁形.下面就和大家分享一些我在工作中常用的iOS调试小技能. 1. 打印 最简单,基础的调试方法就是打印日志了.贴出两段封装 ...

  8. innodb之超时参数配置

    可参考:http://www.penglixun.com/tech/database/mysql_timeout.html 下面内容摘取自上面这个链接. connection_timeout,只是设置 ...

  9. db2 bind on luw

    https://www.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.apdv.embed.doc/doc/c000556 ...

  10. 七牛:关于图片 EXIF 信息中旋转参数 Orientation 的理解

    EXIF(Exchangeable Image File)是 “可交换图像文件” 的缩写,当中包含了专门为数码相机的照片而定制的元数据,可以记录数码照片的拍摄参数.缩略图及其他属性信息,简单来说,Ex ...