Balancing Act
 

Description

Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the tree yields a forest: a collection of one or more trees. Define the balance of a node to be the size of the largest tree in the forest T created by deleting that node from T. 
For example, consider the tree: 

Deleting node 4 yields two trees whose member nodes are {5} and {1,2,3,6,7}. The larger of these two trees has five nodes, thus the balance of node 4 is five. Deleting node 1 yields a forest of three trees of equal size: {2,6}, {3,7}, and {4,5}. Each of these trees has two nodes, so the balance of node 1 is two.

For each input tree, calculate the node that has the minimum balance. If multiple nodes have equal balance, output the one with the lowest number.

Input

The first line of input contains a single integer t (1 <= t <= 20), the number of test cases. The first line of each test case contains an integer N (1 <= N <= 20,000), the number of congruence. The next N-1 lines each contains two space-separated node numbers that are the endpoints of an edge in the tree. No edge will be listed twice, and all edges will be listed.
 

Output

For each test case, print a line containing two integers, the number of the node with minimum balance and the balance of that node.
 

Sample Input

1
7
2 6
1 2
1 4
4 5
3 7
3 1

Sample Output

1 2

题意:

  给你n点的树

  让你删去一个点,剩下的 子树中节点数最多的就是删除这个点的 价值

  求删除哪个点 价值最小就是重心 

题解:

  来来来

  认识一下什么重心

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
const int N = 1e5+, M = 1e2+, mod = 1e9+, inf = 1e9+;
typedef long long ll; vector<int > G[N];
int T,n,siz[N],mx,mx1;
void dfs(int u,int fa) {
siz[u] = ;
int ret = ;
for(int i=;i<G[u].size();i++) {
int to = G[u][i];
if(to == fa) continue;
dfs(to,u);
siz[u] += siz[to];
ret = max(ret , siz[to]);
}
if(u!=) ret = max(ret , n - siz[u]);
if(ret <= mx) {
mx1 = u;
mx = ret;
}
}
int main()
{
scanf("%d",&T);
while(T--) {
scanf("%d",&n);
for(int i=;i<N;i++) G[i].clear();
for(int i=;i<n;i++) {
int a,b;
scanf("%d%d",&a,&b);
G[a].push_back(b);
G[b].push_back(a);
}
mx = inf;
dfs(,-);
printf("%d %d\n",mx1 , mx);
}
}

POJ 1655 Balancing Act 树的重心的更多相关文章

  1. POJ 1655 - Balancing Act 树型DP

    这题和POJ 3107 - Godfather异曲同工...http://blog.csdn.net/kk303/article/details/9387251 Program: #include&l ...

  2. POJ.1655 Balancing Act POJ.3107 Godfather(树的重心)

    关于树的重心:百度百科 有关博客:http://blog.csdn.net/acdreamers/article/details/16905653 1.Balancing Act To POJ.165 ...

  3. poj 1655 Balancing Act 求树的重心【树形dp】

    poj 1655 Balancing Act 题意:求树的重心且编号数最小 一棵树的重心是指一个结点u,去掉它后剩下的子树结点数最少. (图片来源: PatrickZhou 感谢博主) 看上面的图就好 ...

  4. POJ 1655 Balancing Act【树的重心】

    Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14251   Accepted: 6027 De ...

  5. POJ 1655.Balancing Act 树形dp 树的重心

    Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14550   Accepted: 6173 De ...

  6. poj 1655 Balancing Act(找树的重心)

    Balancing Act POJ - 1655 题意:给定一棵树,求树的重心的编号以及重心删除后得到的最大子树的节点个数size,如果size相同就选取编号最小的. /* 找树的重心可以用树形dp或 ...

  7. POJ 1655 Balancing Act&&POJ 3107 Godfather(树的重心)

    树的重心的定义是: 一个点的所有子树中节点数最大的子树节点数最小. 这句话可能说起来比较绕,但是其实想想他的字面意思也就是找到最平衡的那个点. POJ 1655 题目大意: 直接给你一棵树,让你求树的 ...

  8. POJ 1655 - Balancing Act - [DFS][树的重心]

    链接:http://poj.org/problem?id=1655 Time Limit: 1000MS Memory Limit: 65536K Description Consider a tre ...

  9. POJ 1655 Balancing Act【树的重心模板题】

    传送门:http://poj.org/problem?id=1655 题意:有T组数据,求出每组数据所构成的树的重心,输出这个树的重心的编号,并且输出重心删除后得到的最大子树的节点个数,如果个数相同, ...

随机推荐

  1. poj 2251

    http://poj.org/problem?id=2251 一道简单的BFS,只不过是二维数组,变三维数组,也就在原来基础上加了两个方向. 题意就是从S走到E,#不能走. #include < ...

  2. Unity3d 查找所选的是否引用过某资源

    一.使用方式: 1.选择要被查找的资源,右键->Find Reference 2.把资源拽入Res,点Find 3.输出结果见Console //代码 using UnityEngine; us ...

  3. MySQL Plugin 'InnoDB' init function returned error

    . . 在MySQL的配置文件中,设定default-table-type=InnoDB,发现MySQL无法正常的启动,错误日志中给出了如下的信息: 150210 18:11:19 mysqld_sa ...

  4. 配置tomcat的虚拟路径

    配置tomcat的虚拟路径有两个地方需要配置,以eclipse为例: ①在tomcat的server.xml中的host节点内添加 <Context path="/meims/user ...

  5. bootstrap 重写JS的alert、comfirm函数

    原理是使用bootstrap的Modal插件实现. 一.在前端模板合适的地方,加入Modal展现div元素. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ...

  6. 将项目导入eclipse中出现的jsp页面报错解决

  7. 【python】An Introduction to Interactive Programming in Python(week two)

    This is a note for https://class.coursera.org/interactivepython-005 In week two, I have learned: 1.e ...

  8. 【mongo】mongo数据转json时特殊类型处理

    mongo数据库中的有些数据类型是无法用json序列化的,比如ObjectId或者datetime.datetime类型. 可以通过json.JSONEncoder来处理 import json im ...

  9. Alcatraz安装在xcode7失败执行下面代码

    1.步奏rm -rf ~/Library/Application\ Support/Developer/Shared/Xcode/Plug-ins/Alcatraz.xcplugin 2.步奏 rm ...

  10. August 17th 2016 Week 34th Wednesday

    Life is painting a picture, not doing a sum. 生活就像是绘画,而不是做算术. I am too serious about digits. All what ...