本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。

本文作者:ljh2000
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!

Description

“第七套广播体操,原地踏步——走!”

众所周知,跳蚤们最喜欢每天早起做早操,经常天还没亮就齐刷刷地站在操场做着反复纵跳热热身。跳晚国在研制三星 note7 的时候注意到了这点,于是他们打算让炸弹更快地引爆,这样就可以消灭更多早起的跳蚤。

三星 note7 的主板可以看作是由(2n+1)×(2n+1) 个中继器构成的,某些中继器会有导线连在一起,左上角和右下角的中继器分别连着电源的正负极。

电流流过一根导线的时间可忽略不计,但当电流经过中继器时,会延缓一段时间再从中继器流出。这个时间只跟该中继器本身有关,我们把这段时间的长度称为中继器的延时值。

这些中继器由导线连接围成一个一个的层,同个层的中继器的种类都一样,而不同层的种类都不一样,可以发现总共有n+1 层。当n=4 时,主板大概长这样:

跳晚们打算再加几根导线将某些中继器连接起来.凭借发达的重工业,他们能生产出无数条导线。但由于主板的限制,他们的导线只能和主板四周的边平行,且其长度只够连接相邻两个中继器。

现在他们想知道,他们改造的三星 note7 的电源正极流出的电流能在多短的时间到达电源负极从而造成短路,这样电池就会释放出巨大的能量摧毁跳蚤国的有生力量了。

请参考输入格式和样例配图来更好地理解题意。

输入格式

第一行一个正整数 nn。

第二行n+1 个正整数 a0,a1,…,an,表示从内到外每层的中继器的延时值,单位为秒。其中,第 i 行第 j 列的中继器的延时值为(1≤i,j≤n)amax(|i−n−1|,|j−n−1|)

输出格式

输出一行一个数表示改造后的最短引爆时间。

C/C++ 输入输出 long long 时请用 %lld。C++ 可以直接使用 cin/cout 输入输出。

样例一

input

1
1 2

output

9

explanation

这个数据对应的主板如下所示:

显然,我们可以用导线改造成这样:

这样从左上角到右下角就会有条 {2,2,1,2,2}{2,2,1,2,2} 的电流路径,耗时为 99 秒。

样例二

input

9
9 5 3 7 6 9 1 8 2 4

output

69

样例三

见样例数据下载。

限制与约定

测试点编号 nn
1 n≤5n≤5
2 n≤2000n≤2000
3
4 n≤5000n≤5000
5
6 n≤105n≤105
7
8
9
10

对于所有数据,保证每个数都是不超过 109109 的正整数。

正解:贪心

解题报告:

  开始的时候直接写了一发50分暴力,就没管了,把后面两道题暴力写完才回过头来看这道题。发现了一些奇怪的贪心,然后就写了。本来T2、T3暴力+骗分分数挺高的,最后A题FST了,仔细看了一下,没开long long...错失虐场机会。

  考虑一个问题,从外往内数,我们已经到达了第x层,那么1->x-1层每一层都至少经过了一次,否则到不了x。由于图是对称的,我们只考虑一半,另一半直接翻折过去肯定也是最优的。

  那么我们一定希望决策到x时,之前走过的是最优的情况。如何保证最优性呢?我们记录一下从外往内数前x层的最小的权值,我们肯定希望这一层尽可能地多走,而其他的少走。我们假设走了一层别的层的,我们可以把这个不够优的移动往上平移到最优的那一层走,也就是说我可以在最优的那一层多走一次来代替这一层。可以想到,这样的贪心可以保证到达这一层的花费是最小的。

  由于到了x之后又会有新的决策,要么再往内走,要么直接从这一层走出去,也就是说不再往内走。后者可以直接通过公式算出来,发现每一层比内一层多4个,所以很快求出直接从这一层走出去的答案。至于前者,可以继续往下做,相当于是进入下一步决策。

 //It is made by ljh2000
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
using namespace std;
typedef long long LL;
const int MAXN = ;
int n;
LL a[MAXN];
LL ans,now; inline int getint()
{
int w=,q=; char c=getchar();
while((c<'' || c>'') && c!='-') c=getchar(); if(c=='-') q=,c=getchar();
while (c>='' && c<='') w=w*+c-'', c=getchar(); return q ? -w : w;
} inline void work(){
n=getint(); for(int i=;i<=n;i++) a[i]=getint();
now=ans=(1LL<<); LL lin,tot=;
for(LL i=n;i>=;i--) {
lin=a[i]*(*i+)+tot;
if(lin<ans) ans=lin;
if(a[i]<now) now=a[i];
tot+=(now+a[i])*;
}
printf("%lld",ans);
} int main()
{
work();
return ;
}

UOJ244 【UER #7】短路的更多相关文章

  1. 【uoj#244】[UER #7]短路 CDQ分治+斜率优化dp

    题目描述 给出 $(2n+1)\times (2n+1)$ 个点,点 $(i,j)$ 的权值为 $a[max(|i-n-1|,|j-n-1|)]$ ,找一条从 $(1,1)$ 走到 $(2n+1,2n ...

  2. 【UOJ244】[UER7]短路

    [题目大意] (2n+1)*(2n+1)的矩形,由里到外每一层都有一个相同的值.问从左上走到右小经过的点累和的最小值. [思路] 一眼就是贪心.首先能够想到的是,权值最小的那些边要尽可能夺走,所以必定 ...

  3. 【UOJ244】【UER #7】短路

    题解: 感觉贪心水平有所提高.. 首先比较显然的事情是我们可以枚举最深进行到哪一层 我们会发现,当且仅当该层是最小值才会使用决策, 并且是从该层的左上,走到右下 另外中间步骤就是(好难描述啊)一个单调 ...

  4. 【UOJ244】 【UER #7】短路(贪心)

    传送门 uoj Solution 简单题? 考虑一条路径长什么样子,一定是经过某一个字母环的左上角,那么答案就很简单了. 我们记一个前缀最小值,这样子让他一路走下去一定是最优! 然后扫一遍就好了. 代 ...

  5. uoj#244. 【UER #7】短路

    题目 orz myy 这个矩形对称的性质非常优美,所以我们只需要考虑一个\(\frac{1}{4}\)的矩阵,即一个倒三角形 现在我们要求的是从\((1,1)\)到三角形对边上每个点的最短路,不难发现 ...

  6. 【UOJ #244】【UER #7】短路

    http://uoj.ac/contest/35/problem/244 对其他人来说好简单的一道题,我当时却不会做TWT 注定滚粗啊 题解很好的~ #include<cstdio> #i ...

  7. UOJ244 短路 贪心

    正解:贪心 解题报告: 传送门! 贪心真的都是些神仙题,,,以我的脑子可能是不存在自己想出解这种事情了QAQ 然后直接港这道题解法趴,,, 首先因为这个是对称的,所以显然的是可以画一条斜右上的对角线, ...

  8. bzoj1001--最大流转最短路

    http://www.lydsy.com/JudgeOnline/problem.php?id=1001 思路:这应该算是经典的最大流求最小割吧.不过题目中n,m<=1000,用最大流会TLE, ...

  9. 【USACO 3.2】Sweet Butter(最短路)

    题意 一个联通图里给定若干个点,求他们到某点距离之和的最小值. 题解 枚举到的某点,然后优先队列优化的dijkstra求最短路,把给定的点到其的最短路加起来,更新最小值.复杂度是\(O(NElogE) ...

随机推荐

  1. Gruntjs: grunt-contrib-jst

    预编译Underscore模板到JST文件(Underscore:JS工具库) generate JavaScript template functions Gruntfile的配置实例: modul ...

  2. struts2 异常处理3板斧

    板斧1:找不到action的错误 在struts.xml中参考如下配置 <struts> ... <package name="default" namespac ...

  3. swift-sharesdk集成微信、Facebook第三方登录

    好久没有写博客了.最近忙得没有时间更新博客,很忙很忙. 今天就把自己做过的第三方集成和大家分享一下,请大家多多指教. 第一步: 一.获取AppKey(去官方平台注册) 二.下载SDK 三.快速集成 第 ...

  4. ubuntu mysql 更改IP导致mysql无法启动

    bind-address = 127.0.0.1 => bind-address= 136.129.20.168 IP要这么改 这么改远程连不上,那么需要把这行整行注释掉,重启MYSQL,tel ...

  5. Expression Blend4经验分享:制作一个简单的图片按钮样式

    这次分享如何做一个简单的图片按钮经验 在我的个人Silverlight网页上,有个Iphone手机的效果,其中用到大量的图片按钮 http://raimon.6.gwidc.com/Iphone/de ...

  6. 高性能JavaScript 循环语句和流程控制

    前言 上一篇探讨了达夫设备对于代码性能的影响,本文主要探讨并且测试各种常见的循环语句的性能以及流程控制中常见的优化. 循环语句 众所周知,常用的循环语句有for.while.do-while以及for ...

  7. C#微信开发小白成长教程一(公众平台的工作原理与调试环境部署,附视频)

    黑夜给了我黑色的眼睛,我决定录视频到天明.半年前的现在,我还在苦逼着加着班,半年后的今天我依旧苦逼着加着班.不过现在的是为自己加班,作为一个资深程序小白,一个月前我光荣的成了一个不称职的资本家,不称职 ...

  8. 学习SQLite之路(四)

    20160621 更新 参考: http://www.runoob.com/sqlite/sqlite-tutorial.html 1. SQLite   alter命令:不通过执行一个完整的转储和数 ...

  9. SQLite剖析之功能特性

    SQLite是遵守ACID的轻型数据库引擎,它包含在一个相对较小的C库中.它是D.RichardHipp创建的公有领域项目.不像常见的客户端/服务器结构范例,SQLite引擎不是一个与程序通信的独立进 ...

  10. LLC 逻辑链路控制

    LLC  协  议 4.2.1 LLC帧格式 LLC协议定义了LLC层之间通信的帧格式,参见图4.3. 图4.3  LLC帧格式 LLC帧格式中各个字段的含义如下: ① 服务访问点(SAP)地址:SA ...