新技能get——斜率优化
好久没写博客了……我终于回来了……
dp总是令我很头疼的问题之一,然而我还是要学一下怎么优化它。
下面请看一道题吧:
[bzoj3675][Apio2014]序列分割
试题描述
小H最近迷上了一个分割序列的游戏。在这个游戏里,小H需要将一个长度为N的非负整数序列分割成k+l个非空的子序列。为了得到k+l个子序列,小H将重复进行七次以下的步骤:
1.小H首先选择一个长度超过1的序列(一开始小H只有一个长度为n的序列一一也就是一开始得到的整个序列);
2.选择一个位置,并通过这个位置将这个序列分割成连续的两个非空的新序列。
每次进行上述步骤之后,小H将会得到一定的分数。这个分数为两个新序列中元素和的乘积。小H希望选择一种最佳的分割方案,使得k轮(次)之后,小H的总得分最大。
输入
输入文件的第一行包含两个整数n和尼(k+1≤n)。
第二行包含n个非负整数a1,n2….,an(0≤ai≤10^4),表示一开始小H得到的序列。
输出
一行包含一个整数,为小H可以得到的最大得分。
输入示例
输出示例
样例解释
在样例中,小H可以通过如下3轮操作得到108分:
1.-开始小H有一个序列(4,1,3,4,0,2,3)。小H选择在第1个数之后的位置将序列分成两部分,并得到4×(1+3+4+0+2+3)=52分。
2.这一轮开始时小H有两个序列:(4),(1,3,4,0,2,3)。小H选择在第3个数字之后的位置将第二个序列分成两部分,并得到(1+3)×(4+0+2+3)=36分。
3.这一轮开始时小H有三个序列:(4),(1,3),(4,0,2,3)。小H选择在第5个数字之后的位置将第三个序列分成两部分,并得到(4+0)×(2+3)=20分。
经过上述三轮操作,小H将会得到四个子序列:(4),(1,3),(4,0),(2,3)并总共得到52+36+20=108分。
数据范围
100%数据满足2≤n≤100000,1≤k≤min(n -1,200)。
题解
直至把这题A了也不明白“小H将重复进行七次以下的步骤”,为啥是七次以下,所以打了个删除线,希望读者不要多虑。
设F(i, j)表示考虑序列前i个元素,操作了j次的最大得分。
可得转移:F(i, j) = max{ f(k, j - 1) + sum[k] · (sum[i] - sum[k]) | 1 ≤ k < i },sum[i]表示序列第i位的前缀和。
但是这个玩意是O(n2·k)的,太慢了,受不了,于是需要斜率优化。
并且,为了省空间,我们开一个滚动数组,令f(i)表示状态F(i, j)中j为当前操作步数时的方案数(即f(i) = F(i, j)),g(i)表示状态F(i, j)中j为当前操作步数减1时的方案数(即g(i) = F(i, j - 1))。那么f(i) = max{ g(j) + sum[j] * (sum[i] - sum[j]) | 1 ≤ j < i }
假设上一次操作在位置j发生的方案比在位置k发生的方案更优且j > k,则有g(j) + sum[j] · (sum[i] - sum[j]) > g(k) + sum[k] · (sum[i] - sum[k])最后可推出(g(j) - g(k) + sum[k]2 - sum[j]2) / (sum[k] - sum[j]) < sum[i] (注意sum[k] - sum[j] < 0,移项时要变号)注意到sum[i]是单调不降的,所以我们可以用一个单调队列维护变号q[1~n],使得 q[i] < q[i+1] 且 g(q[i+1])比g(q[i])更优。令slop(j, k) = (g(j) - g(k) + sum[k]2 - sum[j]2) / (sum[k] - sum[j]) < sum[i],则当slop(i, q[r]) < slop(q[r], q[r-1])时,q[r]已经没必要存在了。
证明:设q[r]在处理到位置k时被加进队列中,
那么显然k < i
因为g(q[r])比g(q[r-1])更优,所以slop(q[r], q[r-1]) < sum[k]
又sum[i]单调递增,所以
slop(i, q[r]) < slop(q[r], q[r-1]) < sum[k] < sum[i]
注意到slop(i, q[r]) < sum[i],所以i一定比q[r]更优,把q[r]抛弃掉。
马丹这题要开long long,搞得我半天没有调过去……
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <stack>
#include <vector>
#include <queue>
#include <cstring>
#include <string>
#include <map>
#include <set>
using namespace std; const int BufferSize = << ;
char buffer[BufferSize], *Head, *tail;
inline char Getchar() {
if(Head == tail) {
int l = fread(buffer, , BufferSize, stdin);
tail = (Head = buffer) + l;
}
return *Head++;
}
int read() {
int x = , f = ; char c = Getchar();
while(!isdigit(c)){ if(c == '-') f = -; c = Getchar(); }
while(isdigit(c)){ x = x * + c - ''; c = Getchar(); }
return x * f;
} #define maxn 100010
#define LL long long
int n, K, l, r, q[maxn], cur;
LL f[maxn][], sum[maxn]; double sqr(int x) { return (double)x * x; }
double slop(int j, int k) {
return (f[j][cur^] - f[k][cur^] + sqr(sum[k]) - sqr(sum[j])) / (double)(sum[k] - sum[j]);
} int main() {
n = read(); K = read();
for(int i = ; i <= n; i++) sum[i] = sum[i-] + read(); int t = ;
for(int i = ; i <= n; i++) if(sum[i] != sum[i+]) sum[++t] = sum[i];
n = t;
for(int j = ; j <= K; j++) {
cur ^= ;
l = ; r = ;
for(int i = j; i <= n; i++) {
while(l < r && slop(q[l+], q[l]) < (double)sum[i]) l++;
f[i][cur] = f[q[l]][cur^] + sum[q[l]] * (sum[i] - sum[q[l]]);
while(l < r && slop(i, q[r]) < slop(q[r], q[r-])) r--;
q[++r] = i;
}
} printf("%lld\n", f[n][cur]); return ;
}
代码在这里!!
新技能get——斜率优化的更多相关文章
- POJ 2018 Best Cow Fences (二分答案构造新权值 or 斜率优化)
$ POJ~2018~Best~Cow~ Fences $(二分答案构造新权值) $ solution: $ 题目大意: 给定正整数数列 $ A $ ,求一个平均数最大的长度不小于 $ L $ 的子段 ...
- DP的各种优化(动态规划,决策单调性,斜率优化,带权二分,单调栈,单调队列)
前缀和优化 当DP过程中需要反复从一个求和式转移的话,可以先把它预处理一下.运算一般都要满足可减性. 比较naive就不展开了. 题目 [Todo]洛谷P2513 [HAOI2009]逆序对数列 [D ...
- 【BZOJ3672】[Noi2014]购票 树分治+斜率优化
[BZOJ3672][Noi2014]购票 Description 今年夏天,NOI在SZ市迎来了她30周岁的生日.来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会. ...
- [斜率优化DP]【学习笔记】【更新中】
参考资料: 1.元旦集训的课件已经很好了 http://files.cnblogs.com/files/candy99/dp.pdf 2.http://www.cnblogs.com/MashiroS ...
- 单调队列 && 斜率优化dp 专题
首先得讲一下单调队列,顾名思义,单调队列就是队列中的每个元素具有单调性,如果是单调递增队列,那么每个元素都是单调递增的,反正,亦然. 那么如何对单调队列进行操作呢? 是这样的:对于单调队列而言,队首和 ...
- 【BZOJ-3675】序列分割 DP + 斜率优化
3675: [Apio2014]序列分割 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 1420 Solved: 583[Submit][Statu ...
- 5332盛照宗 如何获取新技能+c语言学习调查
如何获取新技能+c语言学习调查 你有什么技能比大多人(超过90%以上)更好? 如果问我有没有什么技能比大多数人,并且是90%的人好,我还真不敢说有,因为世界上有70亿人,要比63亿人做的好才行啊.我也 ...
- 腾讯优测干货精选| 安卓开发新技能Get -常用必备小工具汇总
文/腾讯公司 陈江峰 优测小优有话说: 移动研发及测试干货哪里找?腾讯优测-优社区你值得拥有~ 开发同学们都知道,安卓开发路上会碰到很多艰难险阻,一不小心就被KO.这时候,没有新技能傍身怎么行?今天我 ...
- 动态规划(斜率优化):BZOJ 3675 [Apio2014]序列分割
Description 小H最近迷上了一个分割序列的游戏.在这个游戏里,小H需要将一个长度为N的非负整数序列分割成k+l个非空的子序列.为了得到k+l个子序列, 小H将重复进行七次以下的步骤: 1.小 ...
随机推荐
- orancle的安装和配置
1.安装 Oracle 版本:Oracle Database 10g Release 2 (10.2.0.1) 下载地址: http://www.oracle.com/technology/softw ...
- JavaWeb学习笔记——Tomcat数据源
server.xml配置数据帐号和密码等
- Android学习笔记——download
该工程的功能是实现从网上的链接下载一个lrc文件和一个mp3文件 以下代码是MainActivity.java中的代码 package com.example.download; import com ...
- Eclipse查看hadoop源代码出现Source not found,是因为没有添加.zip
在我们hadoop编程中,经常遇到像看看hadoop的某个类中函数的功能.但是我们会遇到一种情况就是Source not found.遇到这个问题,该如何解决.因为我们已经引入了包,为什么会找不到.如 ...
- MSSQL数据库索引的应用
一.索引的概念 索引就是加快检索表中数据的方法.数据库的索引类似于书籍的索引.在书籍中,索引允许用户不必翻阅完整个书就能迅速地找到所需要的信息.在数据库中,索引也允许数据库程序迅速地找到表中的数据,而 ...
- 让Xcode的控制台支持LLDB类型的打印
这个技巧个人认为非常有用 当Xcode在断点调试的时候,在控制台中输入 po self.view.frame 类似这样的命令会挂掉,不信可以亲自去试试(Xcode7 以后支持LLDB类型的打印) 那么 ...
- 修改ubuntu DNS的步骤/wget url报错: unable to resolve host address的解决方法
wget url 报错:unable to resolve host address ‘url’,显然是无法解析主机地址,这就能看出是DNS解析的问题.解决办法就是配置可用的dns 一般是修改成为谷歌 ...
- jQuery.imgLazyLoad图片懒加载组件
一.前言 当一个页面中请求的图片过多,而且图片太大,页面访问的速度是非常慢的,对用户的体验非常不友好:使用图片懒加载,可以减轻服务器的压力,增加页面的访问量,这里主要是总结一下我自己写的图片懒加载组件 ...
- 继承IDbConnection连接不同数据库
继承IDbConnection连接不同数据库 本方案可实现仅修改app.config即可连接不同数据库,但是设计数据库时需要注意各种数据库的数据类型是不一样的. 各种不同数据库的Connection. ...
- lustre文件系统部署流程
# 1 准备工作### 1.1 添加以太网址添加以太网地址,使得gio017可以访问到需要安装的节点.修改gio017上的/etc/hosts,将需要批量操作的节点名以如下方式添加.```[gio01 ...