BZOJ3583 : 杰杰的女性朋友
将$I$转置,设$G=OI$,则$ans=G^0+G^1+...+G^d$。
注意到$G^d=O(IO)^{d-1}I$,而$IO$是大小为$k\times k$的矩阵,可以通过倍增在$O(k^3\log d)$的时间内求出,然后依次与$O$和$I$的一行一列相乘即可。
时间复杂度$O(nk^2+mk^3\log d)$。
#include<cstdio>
const int N=1000,K=20,L=31,P=1000000007;
int n,m,q,i,j,k,x,y,z,ans,O[N][K],I[N][K],f[N];
int S[K][K],G[K][K],A[L][K][K],B[L][K][K],C[K][K];
inline void up(int&a,int b){a+=b;if(a>=P)a-=P;}
inline void mul(int A[][K],int B[][K]){
int i,j,k;
for(i=0;i<m;i++)for(j=0;j<m;j++){
int t=0;
for(k=0;k<m;k++)t=(1LL*A[i][k]*B[k][j]+t)%P;
C[i][j]=t;
}
}
void cal(int n){
for(i=0;i<m;i++)for(j=0;j<m;j++)S[i][j]=0;
if(n<0)return;
for(i=0;i<m;i++)for(j=0;j<m;j++)G[i][j]=0;
for(i=0;i<m;i++)S[i][i]=G[i][i]=1;
for(i=0;i<L;i++)if(n>>i&1){
for(mul(B[i],G),j=0;j<m;j++)for(k=0;k<m;k++)up(S[j][k],C[j][k]);
for(mul(G,A[i]),j=0;j<m;j++)for(k=0;k<m;k++)G[j][k]=C[j][k];
}
}
int main(){
for(scanf("%d%d",&n,&m);i<n;i++){
for(j=0;j<m;j++)scanf("%d",&O[i][j]);
for(j=0;j<m;j++)scanf("%d",&I[i][j]);
}
for(k=0;k<n;k++)for(i=0;i<m;i++)for(j=0;j<m;j++)A[0][i][j]=(1LL*I[k][i]*O[k][j]+A[0][i][j])%P;
for(i=0;i<m;i++)for(j=0;j<m;j++)B[0][i][j]=A[0][i][j];
for(i=0;i<L-1;i++){
for(mul(A[i],A[i]),j=0;j<m;j++)for(k=0;k<m;k++)A[i+1][j][k]=C[j][k];
for(j=0;j<m;j++)up(A[i][j][j],1);
for(mul(B[i],A[i]),j=0;j<m;j++)for(k=0;k<m;k++)B[i+1][j][k]=C[j][k];
for(j=0;j<m;j++)up(A[i][j][j],P-1);
}
scanf("%d",&q);
while(q--){
scanf("%d%d%d",&x,&y,&z);x--;y--;
cal(z-1);
for(i=0;i<m;i++)for(f[i]=j=0;j<m;j++)f[i]=(1LL*O[x][j]*S[j][i]+f[i])%P;
for(ans=i=0;i<m;i++)ans=(1LL*f[i]*I[y][i]+ans)%P;
printf("%d\n",(ans+(x==y))%P);
}
return 0;
}
BZOJ3583 : 杰杰的女性朋友的更多相关文章
- [BZOJ3583]杰杰的女性朋友(矩阵快速幂)
杰杰的女性朋友 时间限制:10s 空间限制:256MB 题目描述 杰杰是魔法界的一名传奇人物.他对魔法具有深刻的洞察力,惊人的领悟力,以及令人叹为观止的创造力.自从他从事魔法竞赛以来,短短几 ...
- BZOJ3583 杰杰的女性朋友 矩阵
原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ3583.html 题目传送门 - BZOJ3583 题意 有一个 $n$ 个点构成的有向图. 对于每一个 ...
- bzoj3583: 杰杰的女性朋友 && 4362: Graph
Description 给出一张n个点的有向图G(V,E).对于任意两个点u,v(u可以等于v),u向v的连边数为: ∑OUT(u,i) * IN(v,i),其中1<=i<=K 其中k和数 ...
- bzoj3583 杰杰的女性朋友 || bzoj4362 Graph
http://210.33.19.103/problem/2174 很显然是矩阵快速幂的题,设有in和ou矩阵,设in矩阵的转置为in' 显然可以直接暴力求出任意两点间走一步路径条数,然后求其d次幂, ...
- 复旦大学EWP菁英女性课程(复旦卓越女性课程改版后第一期) _复旦大学、女性课程、高级研修班、心理学、EWP_培训通课程
复旦大学EWP菁英女性课程(复旦卓越女性课程改版后第一期) _复旦大学.女性课程.高级研修班.心理学.EWP_培训通课程 复旦大学EWP菁英女性课程(复旦卓越女性课程改版后第一期) 学 ...
- cojs QAQ的矩阵 题解报告
题目描述非常的清晰 首先我们考虑(A*B)^m的求法,这个部分可以参考BZOJ 杰杰的女性朋友 我们不难发现(A*B)^m=A*(B*A)^(m-1)*B A*B是n*n的矩阵,而B*A是k*k的矩阵 ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- qbxt五一数学Day1
目录 I. 基础知识 1. 带余除法(小学) 1. 定义 2. 性质 2. 最大公约数(gcd)/ 最小公倍数(lcm) 1. 定义 2. 性质 3. 高精度 II. 矩阵及其应用 1. 定义 2. ...
- DOM实战
作者声明:本博客中所写的文章,都是博主自学过程的笔记,参考了很多的学习资料,学习资料和笔记会注明出处,所有的内容都以交流学习为主.有不正确的地方,欢迎批评指正 视频来源:https://www.bil ...
随机推荐
- 比较 http连接 vs socket连接
http连接 :短连接,客户端,服务器三次握手建立连接,服务器响应返回信息,连接关闭,一次性的socket连接:长连接,客户端,服务器三次握手建立连接不中断(通过ip地址端口号定位进程)及时通讯,客户 ...
- 在Linux中安装JDK的步骤
相信不少学习Java的朋友都在Windows操作系统中安装过JDK,这里就不对JDK做详细的介绍了. 在Windows下安装JDK可参考:JDK的安装和配置 1.下载JDK 我们可以去官网(http: ...
- python字符串中插入变量
- HTML5 – 2.新元素
figcaption 定义和用法 <figcaption> 标签定义 figure 元素的标题(caption). "figcaption" 元素应该被置于 " ...
- C#的面向对象特性之多态
using System; using System.Collections; using System.Collections.Generic; namespace codeTest { class ...
- Ubuntu下调整swap分区的大小
转自:http://blog.chinaunix.net/uid-7573623-id-2048964.html 由于安装oracle 的时候,swap太小不能继续安装,于是想有什么方法在不不用安装o ...
- How many Fibs?【sudt 2321】【大数的加法及其比较】
How many Fibs? Time Limit: 1000ms Memory limit: 65536K 有疑问?点这里^_^ 题目描述 Recall the definition of t ...
- SOA 架构中的ESB是更好的应用于异构系统集成整合还是用于统一服务调用/基础服务实施
一.讨论主题与观点 写一篇文章.发现一次自觉得有意思的SOA架构方面的讨论,源于昨天AgileEAS.NET SOA 平台群(113723486)里几个群友的一次关于ESB的一次讨论. 大家的讨论观点 ...
- [荐]使用jQuery清空file文件域
file是文本域,我们一般都会使用它来上传文件,在上传文件时我们需要验证,验证完成后,如果存在错误,为了防止将错误信息也上传上去,我们总是希望能够将其清空.但是在IE中,为了安全起见它是不允许我们改变 ...
- 回忆一次面试Android研发的问题
有NDK开发JNI程序经验优先 intent intentfileter 阿里云 线程,异步 1.图片缓冲2.解压3.获取搜索记录 4.在安卓开发过程中用到那些框架