加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 3 The law of averages, and expected values
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授。
Summary
- Law of Large Numbers As the number of trials increases, the chance that the proportion of successes is in the range $$p\pm\text{a fixed amount}$$ goes to $1$.
- Expected value of the Binomial If a random variable $X$ has the binomial distribution with parameters $n$ and $p$, then $$E(x)=n\cdot p$$
PRACTICE
PROBLEM 1
In each pair of events below, pick the one that has the higher chance.
1a)
A: 50,000 heads in 100,000 tosses of a coin
B: 500,000 heads in 1,000,000 tosses of a coin
1b)
A: In 60 rolls of a die, the number of times “six” shows up is in the range 10 plus or minus 3
B: In 600 rolls of a die, the number of times “six” shows up is in the range 100 plus or minus 3
1c)
A: In 1000 draws by a random number generator, the percent of times “0” shows up is in the range 10% plus or minus 1%
B: In 10,000 draws by a random number generator, the percent of times “0” shows up is in the range 10% plus or minus 1%
1d)
A: In 1000 draws by a random number generator, the percent of times “0” appears is less than 11%
B: In 10,000 draws by a random number generator, the percent of times “0” appears is less than 11%
Solution
1a) A. The chance of getting exactly half heads goes down (i.e. goes to 0) with more tosses. For example:
dbinom(x = 50000, size = 100000, prob = 0.5)
[1] 0.002523126
dbinom(x = 500000, size = 1000000, prob = 0.5)
[1] 0.0007978844
1b) A. The chance that the number of successes falls in the range “most likely value plus or minus a fixed amount” goes down with more rolls. For example:
sum(dbinom(x = 7:13, size = 60, prob = 1/6))
[1] 0.7767122
sum(dbinom(x = 97:103, size = 600, prob = 1/6))
[1] 0.2985048
1c) B. This follows the "Law of Large Numbers".
sum(dbinom(x = 90:110, size = 1000, prob = 1/10))
[1] 0.7318197
sum(dbinom(x = 900:1100, size = 10000, prob = 1/10))
[1] 0.9991879
1d) B. “less than $11\%$” includes $10\%$, which is where the percent of 0’s is going as the number of draws increases. More formally, the chance that the percent of 0’s exceeds the actual probability (i.e. $0.1$) plus any fixed amount (e.g. $0.01$) gets smaller as the number of draws increases. So the probability of the complement gets larger.
PROBLEM 2
My friend and I gamble on a roll of a die as follows: if the die shows 1 spot or 6 spots, I give my friend $\$2$. If the die show 2, 3, 4, or 5 spots, my friend gives me $\$1$. Suppose we play this game 100 times. What is my expected net gain?
Solution
$P(\text{lose})=\frac{1}{3},\ P(\text{win})=\frac{2}{3}$. Therefore $$E=\frac{1}{3}\times(-2)+\frac{2}{3}\times1=0$$
PROBLEM 3
A die is rolled 600 times. The “multiples of 3” are the faces with 3 spots and 6 spots. Find the expected value of:
a) the proportion of times multiples of 3 appear
b) the number of times multiples of 3 appear
Solution
3a) $$P(\text{multiples of 3 appear})=\frac{2}{6}=\frac{1}{3}$$
3b) Binomial distribution, $$E=np=600\times\frac{1}{3}=200$$
PROBLEM 4
If you bet on a “split” in roulette, your chance of winning is 2/38. The bets pays 17 to 1; this means that if you bet \$1 on a split and win the bet, your net gain is \$17; if you lose the bet, you lose your dollar and so your net gain is -\$1. Suppose you place 200 bets on a split; assume your bets are independent of each other. Find your expected net gain.
Solution
The expected value of the proportion of the net gain is $$E_p=\frac{2}{38}\times 17+\frac{36}{38}\times(-1)=-\frac{1}{19}$$ Hence the expected value of the net gain is $$E=200\times(-\frac{1}{19})\doteq-10.52632$$ In other words you expect to come out losing about \$10.53.
EXERCISE SET 3
PROBLEM 1
In a roll of a die, let a "six" be the face with six spots. Consider the two events below.
Event A: more than 16,000 sixes in 100,000 rolls
Event B: more than 160,000 sixes in 1,000,000 rolls.
Which probability is larger?
Solution
According to the Law of Large Numbers, $P(A) < P(B)$. Alternatively, we can test it using smaller examples: $$P(\text{more than 160 sixes in 1000 rolls})$$ $$=\sum_{k=161}^{1000}C_{1000}^{k}\cdot(\frac{1}{6})^k\cdot(\frac{5}{6})^{1000-k}\doteq0.6971976$$ And $$P(\text{more than 1600 sixes in 10000 rolls})$$ $$=\sum_{k=1601}^{10000}C_{10000}^{k}\cdot(\frac{1}{6})^k\cdot(\frac{5}{6})^{10000-k}\doteq0.9626252$$ R code:
sum(dbinom(161:1000, 1000, 1/6))
[1] 0.6971976
sum(dbinom(1601:10000, 10000, 1/6))
[1] 0.9626252
PROBLEM 2
In the bet on a “single number” at roulette, there is chance 1/38 of winning. The bet pays 35 to 1; you can take this to mean that if you win the bet, your net gain is $\$35$, and if you lose the bet then you lose $\$1$ (that is, your net gain is $-\$1$).
You don’t need to know any more about roulette to solve this problem, but the description given above is what would happen if you were to bet $\$1$ on a single number at a Las Vegas roulette table.
Suppose you bet repeatedly on a single number; assume that the bets are independent of each other. Find the expected value of your net gain from 38 bets.
Solution
$$E=38\times(\frac{1}{38}\times35+\frac{37}{38}\times(-1))=38\times(-\frac{2}{38})=-2$$
PROBLEM 3
400 draws are made at random with replacement from 5 tickets that are marked -2, -1, 0, 1, and 2 respectively. Find the expected value of:
3A the number of times positive numbers appear
3B the sum of all the numbers drawn
3C the sum of the positive numbers drawn
Solution
3A) $$E(\text{number of times positive numbers appear})=400\times\frac{2}{5}=160$$
3B) $$E(\text{sum of all the numbers drawn})=0$$
3C) $$E(\text{sum of the positive numbers drawn})$$ $$=400\times(1\times\frac{1}{5}+2\times\frac{1}{5})=400\times\frac{3}{5}=240$$
加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 3 The law of averages, and expected values的更多相关文章
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 5 The accuracy of simple random samples
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 4 The Central Limit Theorem
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 2 Random sampling with and without replacement
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 1 The Two Fundamental Rules (1.5-1.6)
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Final
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Midterm
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.3x Inference 统计推断学习笔记: FINAL
Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.3x Inference 统计推断学习笔记: Section 2 Testing Statistical Hypotheses
Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.3x Inference 统计推断学习笔记: Section 1 Estimating unknown parameters
Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
随机推荐
- 更好的逐帧动画函数 — requestAnimationFrame 简介
本文将会简单讲讲 requestAnimationFrame 函数的用法,与 setTimeout/setInterval 的区别和联系,以及当标签页隐藏时 requestAnimationFrame ...
- FPGA中的INOUT接口和高阻态
除了输入输出端口,FPGA中还有另一种端口叫做inout端口.如果需要进行全双工通信,是需要两条信道的,也就是说需要使用两个FPGA管脚和外部器件连接.但是,有时候半双工通信就能满足我们的要求,理论上 ...
- 【python游戏编程之旅】第八篇---pygame游戏开发常用数据结构
本系列博客介绍以python+pygame库进行小游戏的开发.有写的不对之处还望各位海涵. 上一个博客我们一起学习了pygame中冲突检测技术:http://www.cnblogs.com/msxh/ ...
- .net 估计要死在你手里了
最近不太爽,想换工作,上这些知名的招聘网站,一搜 .net 心凉了一截,很少有大公司用.net,工资也不是很高. 不用我多说什么,想必很多人应该有类似经历,只是打了牙往肚子里咽. 来两副图: 最近用滴 ...
- SQL中的内连接与外连接
关于关系代数连接运算的介绍请查看下面链接 http://www.cnblogs.com/xidongyu/articles/5980407.html 连接运算格式 链接运算由两部分构成:连接类型和连接 ...
- tomcat设置端口号和默认webapp
tomcat一下载,解压之后webapps目录下自带几个webapp: * docs文档:这是一个静态页面集,不用启动tomcat也可以阅读 * examples样例 * hostmanager主机管 ...
- [转]mysql免安装版配置
现在mysql有一个installer,相当于安装包管理器.包含mysql的各个组件,比如workbench,各个语言的connector.十分方便,不用就可惜了.实在没有必要下载zip版,自己配置. ...
- canvas三角函数做椭圆运动效果
<canvas id="canvas" width="800" height="400" style="background ...
- 高手详解SQL性能优化十条经验
1.查询的模糊匹配 尽量避免在一个复杂查询里面使用 LIKE '%parm1%'—— 红色标识位置的百分号会导致相关列的索引无法使用,最好不要用. 解决办法: 其实只需要对该脚本略做改进,查询速度便会 ...
- 求割点 poj 1523
给你一些双向边 求有多少个割点 并输出去掉点这个点 去掉后有几个联通分量 Tarjan #include<stdio.h> #include<algorithm> #inclu ...