poj 2774 Long Long Message 后缀数组基础题
Time Limit: 4000MS | Memory Limit: 131072K | |
Total Submissions: 24756 | Accepted: 10130 | |
Case Time Limit: 1000MS |
Description
The little cat lives in an unrich family, so he frequently comes to the mobile service center, to check how much money he has spent on SMS. Yesterday, the computer of service center was broken, and printed two very long messages. The brilliant little cat soon found out:
1. All characters in messages are lowercase Latin letters, without punctuations and spaces.
2. All SMS has been appended to each other – (i+1)-th SMS comes directly after the i-th one – that is why those two messages are quite long.
3. His own SMS has been appended together, but possibly a great many redundancy characters appear leftwards and rightwards due to the broken computer.
E.g: if his SMS is “motheriloveyou”, either long message printed by that machine, would possibly be one of “hahamotheriloveyou”, “motheriloveyoureally”, “motheriloveyouornot”, “bbbmotheriloveyouaaa”, etc.
4. For these broken issues, the little cat has printed his original text twice (so there appears two very long messages). Even though the original text remains the same in two printed messages, the redundancy characters on both sides would be possibly different.
You are given those two very long messages, and you have to output the length of the longest possible original text written by the little cat.
Background:
The SMS in Byterland mobile service are charging in dollars-per-byte. That is why the little cat is worrying about how long could the longest original text be.
Why ask you to write a program? There are four resions:
1. The little cat is so busy these days with physics lessons;
2. The little cat wants to keep what he said to his mother seceret;
3. POJ is such a great Online Judge;
4. The little cat wants to earn some money from POJ, and try to persuade his mother to see the doctor :(
Input
Output
Sample Input
yeshowmuchiloveyoumydearmotherreallyicannotbelieveit
yeaphowmuchiloveyoumydearmother
Sample Output
27
Source
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int INF = 0x3f3f3f3f;
const int maxn = + ;
int t1[maxn], t2[maxn], c[maxn];
bool cmp(int *r, int a, int b, int l) {
return r[a] == r[b] && r[a + l] == r[b + l];
}
void da(char str[], int sa[], int Rank[], int heigh[], int n, int m)
{
n++;
int i, j, p, *x = t1, *y = t2;
for(i = ; i < m; ++i) c[i] = ;
for(i = ; i < n; ++i) c[ x[i] = str[i] ]++;
for(int i = ; i < m; ++i) c[i] += c[i - ];
for(int i = n - ; i >= ; --i) sa[--c[x[i]]] = i; for(int j = ; j <= n; j <<= )
{
p = ;
for(i = n - j; i < n; ++i) y[p++] = i;
for(i = ; i < n; ++i) if(sa[i] >= j) y[p++] = sa[i] - j; for(i = ; i < m; ++i) c[i] = ;
for(i = ; i < n; ++i) c[x[y[i]]]++;
for(i = ; i < m; ++i) c[i] += c[i - ];
for(i = n - ; i >= ; --i) sa[--c[x[y[i]]]] = y[i];
swap(x, y);
p = ; x[ sa[] ] = ;
for(i = ; i < n; ++i)
x[ sa[i] ] = cmp(y, sa[i - ], sa[i], j) ? p - : p++;
if(p >= n) break;
m = p;
}
int k = ;
n--;
for(i = ; i <= n; ++i) Rank[ sa[i] ] = i;
for(i = ; i < n; ++i) {
if(k) k--;
j = sa[Rank[i] - ];
while(str[i + k] == str[j + k]) k++;
heigh[ Rank[i] ] = k;
}
} int Rank[maxn], heigh[maxn], sa[maxn];
char s[maxn], s2[maxn];
void out(int n) {
puts("Rank[]");
///Rank数组的有效范围是0~n-1, 值是1~n
for(int i = ; i <= n; ++i) printf("%d ", Rank[i]);
puts("sa[]");
///sa数组的有效范围是1~n,值是0~n-1
for(int i = ; i <= n; ++i) printf("%d ", sa[i]);
puts("heigh[]");
///heigh数组的有效范围是2~n
for(int i = ; i <= n; ++i) printf("%d ", heigh[i]);
}
int ls;
bool check(int x, int n) {
int mi = INF, mx = -INF;
for(int i = ; i <= n; ++i) {
if(heigh[i] >= x) {
mi = min(mi, min(sa[i - ], sa[i]));
mx = max(mx, max(sa[i - ], sa[i]));
}else {
if(mi + x < ls && mx >= ls) return true;
mi = INF, mx = -INF;
}
}
if(mi + x < ls && mx > ls) return true;
return false;
}
int solve(int n) {
int L = , R = n + ;
while(R - L > ) {
int M = (L + R) >> ;
if(check(M, n)) L = M;
else R = M;
}
return L;
}
int main() {
while(~scanf("%s%s", s, s2))
{
ls = strlen(s);
strcat(s, s2);
int n = strlen(s);
da(s, sa, Rank, heigh, n, );
printf("%d\n", solve(n));
}
return ;
}
poj 2774 Long Long Message 后缀数组基础题的更多相关文章
- POJ 2774 Long Long Message 后缀数组模板题
题意 给定字符串A.B,求其最长公共子串 后缀数组模板题,求出height数组,判断sa[i]与sa[i-1]是否分属字符串A.B,统计答案即可. #include <cstdio> #i ...
- POJ 2774 Long Long Message 后缀数组
Long Long Message Description The little cat is majoring in physics in the capital of Byterland. A ...
- poj 2774 Long Long Message 后缀数组LCP理解
题目链接 题意:给两个长度不超过1e5的字符串,问两个字符串的连续公共子串最大长度为多少? 思路:两个字符串连接之后直接后缀数组+LCP,在height中找出max同时满足一左一右即可: #inclu ...
- POJ 2774 Long Long Message (后缀数组+二分)
题目大意:求两个字符串的最长公共子串长度 把两个串接在一起,中间放一个#,然后求出height 接下来还是老套路,二分出一个答案ans,然后去验证,如果有连续几个位置的h[i]>=ans,且存在 ...
- POJ - 2774 Long Long Message (后缀数组/后缀自动机模板题)
后缀数组: #include<cstdio> #include<algorithm> #include<cstring> #include<vector> ...
- POJ 2774 Long Long Message ——后缀数组
[题目分析] 用height数组RMQ的性质去求最长的公共子串. 要求sa[i]和sa[i-1]必须在两个串中,然后取height的MAX. 利用中间的字符来连接两个字符串的思想很巧妙,记得最后还需要 ...
- PKU 2774 Long Long Message (后缀数组练习模板题)
题意:给你两个字符串.求最长公共字串的长度. by:罗穗骞模板 #include <iostream> #include <stdio.h> #include <stri ...
- Long Long Message 后缀数组入门题
Long Long Message Time Limit: 4000MS Memory Limit: 131072K Total Submissions: 22564 Accepted: 92 ...
- hdu 3518 Boring counting 后缀数组基础题
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission( ...
随机推荐
- 对QQ、微信等第三方登录的几个思考
转自:http://www.jianshu.com/p/7f282dfc16fc 今天聊聊注册.登录环节中很常见的第三方登录,如QQ.微信.支付宝.新浪微博等.虽然这些产品的开放平台都提供了标准的接入 ...
- Yii里获取当前controller和action的id
Yii里获取当前controller和action的id 在控制器里$name = $this->getId(); // controller$name = $action->id; ...
- 一个.xib界面文件中设计有多个View
一个新建的.xib文件(Xcode's Interface Builder),有一个默认的View,也就是self.view,是主视图 其他新建的View可以在viewDidLoad()函数中使用 [ ...
- ASP.NET SignalR 与 LayIM2.0 配合轻松实现Web聊天室(零) 前言
前端时间听一个技术朋友说 LayIM 2.0 发布了,听到这个消息抓紧去官网看了一下.(http://layim.layui.com/)哎呀呀,还要购买授权[大家支持一下哦],果断买了企业版,喜欢钻研 ...
- NYOJ题目124中位数
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAssAAAJUCAIAAABsWvwaAAAgAElEQVR4nO3dPXLjuraG4TsJ5xqIYw
- NYOJ题目839合并
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAskAAAKgCAIAAADmrHcoAAAgAElEQVR4nO3dO1LsOheG4X8S5AyE2A
- (2)Underscore.js常用方法
目录 1.集合相关方法 1.1.数组的处理 map(循环,有返回值),将返回的值依次存入一个新的数组 each(循环,无返回值 ...
- Memcached驱动(C#)
using Memcached.ClientLibrary; using System; using System.Collections.Generic; using System.IO; usin ...
- Linux系统启动过程分析
[原创]Linux系统启动过程分析-wjlkoorey258-ChinaUnix博客http://blog.chinaunix.net/uid-23069658-id-3142047.html 经过对 ...
- Delphi中弹出提示框的四种方法
参考:http://blog.itpub.net/8432156/viewspace-924843/ 更为详细的内容请参见:http://blog.csdn.net/akof1314/article/ ...