题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2342

思路:先跑一遍Manacher求出p[i]为每个位置为中心的回文半径,因为双倍回文串的长度一定是4的倍数,即偶数,那么对于Manacher的回文中心一定是'#'字符。所以我们枚举每个'#',对于每个'#'当回文半径大于等于4才有可能成为双倍回文。如果当前位置的i是'#'且满足以上条件。那么我们就找到i右边的j。因为双倍回文的长度是4的倍数,那么i右边的j的回文长度一定是2的倍数,即偶数,所以对于j我们只需要枚举等于'#'的j,然后如果p[j]>j-i即说明了存在一个长度为(j-i)*2的双倍回文串。因为i是双倍回文的中心,j又是i右边回文串的中心,所以j的枚举范围是[i,i+(p[i]/2)]. 注意暴力判断j时需要j从大到小判断,当找到第一个满足双倍回文的j时就要跳出枚举。因为此时的j肯定是最长的。不然会TLE。

#define _CRT_SECURE_NO_DEPRECATE
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<algorithm>
using namespace std;
const int MAXN = + ;
typedef long long int LL;
#define INF 0x3f3f3f3f
char str[MAXN], dstr[MAXN * ];
int lenstr, lendstr, p[MAXN * ], ans;
void manacher(){
memset(p, , sizeof(p));
int id = , mx = ;
for (int i = ; i<lendstr; i++){
if (mx>i){
p[i] = min(p[ * id - i], mx - i);
}
else{
p[i] = ;
}
while (dstr[i - p[i]] == dstr[i + p[i]]){ //暴力匹配
p[i]++;
}
if (p[i] + i>mx){
mx = p[i] + i;
id = i;
}
}
}
void init(){
dstr[] = '$';
dstr[] = '#';
for (int i = ; i<lenstr; i++){
dstr[i * + ] = str[i];
dstr[i * + ] = '#';
}
lendstr = lenstr * + ;
dstr[lendstr] = '*';
}
int main()
{
int n;
while (~scanf("%d", &n)){
scanf("%s", str);
lenstr = n;
init();
manacher();
ans = ;
for (int i = ; i < lendstr; i++){//实际回文长度为p[i]-1
p[i]--;
}
for (int i = ; i<lendstr; i++){
if (dstr[i] == '#'&&p[i]>=){//枚举每一个'#'并且半径大于等于4的i
for (int k = p[i] / ,j=i+k*; k >; k--, j -= ){//枚举j,j为i右边的'#'
if (p[j] >= j - i){
ans = max(ans, (j-i) * );
break; //剪枝。
}
}
}
}
printf("%d\n", ans);
}
return ;
}

BZOJ 2342 回文串-Manacher的更多相关文章

  1. BZOJ 2565 回文串-Manacher

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2565 题意:中文题 思路:定义L[i],R[i].表示以i为左端点/右端点时,最长回文串长 ...

  2. 回文树(回文自动机) - BZOJ 3676 回文串

    BZOJ 3676 回文串 Problem's Link: http://www.lydsy.com/JudgeOnline/problem.php?id=3676 Mean: 略 analyse: ...

  3. BZOJ.2565.[国家集训队]最长双回文串(Manacher/回文树)

    BZOJ 洛谷 求给定串的最长双回文串. \(n\leq10^5\). Manacher: 记\(R_i\)表示以\(i\)位置为结尾的最长回文串长度,\(L_i\)表示以\(i\)开头的最长回文串长 ...

  4. BZOJ 2565: 最长双回文串 [Manacher]

    2565: 最长双回文串 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1842  Solved: 935[Submit][Status][Discu ...

  5. bzoj 2565: 最长双回文串 manacher算法

    2565: 最长双回文串 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem. ...

  6. bzoj 相似回文串 3350 3103 弦图染色+manacher

    相似回文串 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 143  Solved: 68[Submit][Status][Discuss] Descr ...

  7. bzoj 3790 神奇项链 回文串 manacher|PAM

    LINK:神奇项链 存在两个操作:1. 一个操作可以生成所有形式的回文串 2.一个操作可以将两个串给合并起来 如果前缀和后缀相同还可以将其并起来. 多组询问 每次询问合成一个串所需最少多少次2操作. ...

  8. POJ 3974 回文串-Manacher

    题目链接:http://poj.org/problem?id=3974 题意:求出给定字符串的最长回文串长度. 思路:裸的Manacher模板题. #include<iostream> # ...

  9. 【回文串-Manacher】

    Manacher算法能够在O(N)的时间复杂度内得到一个字符串以任意位置为中心的回文子串.其算法的基本原理就是利用已知回文串的左半部分来推导右半部分. 转:http://blog.sina.com.c ...

随机推荐

  1. JS 异步加载的方法

    (1) defer,只支持IE : <script type="text/javascript" defer="defer"> </scrip ...

  2. WebService到底是什?

    一.序言 大家或多或少都听过WebService(Web服务),有一段时间很多计算机期刊.书籍和网站都大肆的提及和宣传WebService技术,其中不乏很多吹嘘和做广告的成分.但是不得不承认的是Web ...

  3. linux 配置tomcat运行远程监控(JMX)

    在实际使用中,我们经常要监控tomcat的运行性能.需要配置相应的参数提供远程连接来监控tomcat服务器的性能.本文详细介绍如何一步一步的配置tomcat相应参数.允许远程连接监控. 工具/原料 v ...

  4. mybatis 的if else

    <update id="update" parameterType="XXX">         update XX set YY          ...

  5. 数独检测器:帝国理工C++作业

    #include <fstream> #include <vector> #include <iostream> #include <string> u ...

  6. 数对的个数(cogs610)

    Description出题是一件痛苦的事情!题目看多了也有审美疲劳,于是我舍弃了大家所熟悉的A+B Problem,改用A-B了哈哈! 好吧,题目是这样的:给出一串数以及一个数字C,要求计算出所有A- ...

  7. python基础——偏函数

    python基础——偏函数 Python的functools模块提供了很多有用的功能,其中一个就是偏函数(Partial function).要注意,这里的偏函数和数学意义上的偏函数不一样. 在介绍函 ...

  8. 清除Windows系统桌面快捷方式小箭头

    清除Windows桌面快捷方式小箭头,需要重启,且不会导致软件无法锁定到任务栏.新建.reg的注册表文件,命名随意,内容如下: Windows Registry Editor Version 5.00 ...

  9. js判断是否为ie6以外的浏览器,若是,则调用相应脚本

    if(navigator.userAgent.indexOf("MSIE 6.0") < 0) { //相应JavaScript脚本}

  10. http://poj.org/problem?id=3278(bfs)

    Catch That Cow Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 76935   Accepted: 24323 ...