Matrix

Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 25004   Accepted: 9261

Description

Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1 <= i, j <= N).

We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a '0' then change it into '1' otherwise change it into '0'). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions.

1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2). 
2. Q x y (1 <= x, y <= n) querys A[x, y]. 

Input

The first line of the input is an integer X (X <= 10) representing the number of test cases. The following X blocks each represents a test case.

The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2 y2", which has been described above.

Output

For each querying output one line, which has an integer representing A[x, y].

There is a blank line between every two continuous test cases.

Sample Input

1
2 10
C 2 1 2 2
Q 2 2
C 2 1 2 1
Q 1 1
C 1 1 2 1
C 1 2 1 2
C 1 1 2 2
Q 1 1
C 1 1 2 1
Q 2 1

Sample Output

1
0
0
1

Source

POJ Monthly,Lou Tiancheng
 
继续继续
 
二维树状数组果然比二维线段树简单多了
讲一下二维树状数组
其实我也不清楚多出来的一维怎么做
但既然多套了一重循环就算作是二维了
文字说不清,自己仿照一维画一个图就明白了
再说这道题
假设只有一维,我们可以用树状数组维护一个差分数组,区间首尾打标记+1,求和即可
那么推广到二维,把维护差分数组的方式看成打一个标记
四个点+1,对询问求一遍和模2
尹神的办法zrl说可以推广,而这种办法只对01有效
就是说对于正常的差分数组,区间修改应该是首加尾减
到了二维应该这样维护
-1 +1
+1 -1
就这样吧
 #include<stdio.h>
#include<stdlib.h>
#include<string.h>
int bit[][];
int n;
int lb(int x){
return x&(-x);
}
int q(int x,int y){
int ans=;
while(x){
int i=y;
while(i){
ans+=bit[x][i];
i-=lb(i);
}
x-=lb(x);
}
return ans%;
}
int c(int x,int y){
while(x<=n+){
int i=y;
while(i<=n+){
bit[x][i]++;
i+=lb(i);
}
x+=lb(x);
}
return ;
}
int main(){
int T;
scanf("%d",&T);
while(T--){
int t;
scanf("%d %d",&n,&t);
memset(bit,,sizeof(bit));
for(int i=;i<=t;i++){
char op=getchar();
while(op!='C'&&op!='Q')op=getchar();
switch(op){
case 'C':
int x1,y1,x2,y2;
scanf("%d %d %d %d",&x1,&y1,&x2,&y2);
c(x1,y1);
c(x2+,y1);
c(x1,y2+);
c(x2+,y2+);
break;
case 'Q':
int x,y;
scanf("%d %d",&x,&y);
printf("%d\n",q(x,y));
break;
default:
break;
}
}
puts("");
}
return ;
}
 
 
 
 
 
 
 
 
 
 
 

[poj2155]Matrix(二维树状数组)的更多相关文章

  1. poj----2155 Matrix(二维树状数组第二类)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 16950   Accepted: 6369 Descripti ...

  2. POJ2155:Matrix(二维树状数组,经典)

    Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the ...

  3. 【poj2155】Matrix(二维树状数组区间更新+单点查询)

    Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the ...

  4. poj2155一个二维树状数组

                                                                                                         ...

  5. POJ 2155 Matrix(二维树状数组,绝对具体)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20599   Accepted: 7673 Descripti ...

  6. POJ 2155:Matrix 二维树状数组

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 21757   Accepted: 8141 Descripti ...

  7. poj 2155 Matrix (二维树状数组)

    题意:给你一个矩阵开始全是0,然后给你两种指令,第一种:C x1,y1,x2,y2 就是将左上角为x1,y1,右下角为x2,y2,的这个矩阵内的数字全部翻转,0变1,1变0 第二种:Q x1 y1,输 ...

  8. POJ2155【二维树状数组,区间修改,点查询?】【又被输入输出坑】

    这题反反复复,到现在才过. 这道题就是树状数组的逆用,用于修改区间内容,查询点的值. 如果单纯就这个奇偶数来判的话,似乎这个思路比较好理解. 看了一下国家集训队论文(囧),<关于0与1在信息学奥 ...

  9. Matrix 二维树状数组的第二类应用

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17976   Accepted: 6737 Descripti ...

随机推荐

  1. book

    http://www.ed2000.com/ShowFile.asp?FileID=61391 e-itbook.com

  2. ExtJs 使用点滴 十三 在FormPanel 嵌入按钮

    Ext.onReady(function () { //初始化标签中的Ext:Qtip属性. Ext.QuickTips.init(); Ext.form.Field.prototype.msgTar ...

  3. php日期时间函数和数学函数

    <?php //第一部分:日期和时间函数 ----------------------------- time(); //int time(void),返回当前时间的时间戳 mktime(); ...

  4. linux常用经典命令

    1.查看cpu # 总核数 = 物理CPU个数 X 每颗物理CPU的核数 # 总逻辑CPU数 = 物理CPU个数 X 每颗物理CPU的核数 X 超线程数   # 查看物理CPU个数 #物理cpu个数 ...

  5. [SLAM] GMapping SLAM源码阅读(草稿)

    目前可以从很多地方得到RBPF的代码,主要看的是Cyrill Stachniss的代码,据此进行理解. Author:Giorgio Grisetti; Cyrill Stachniss  http: ...

  6. [PCL]ApproximateVoxelGrid

    点云滤波继承自Filter模板类 注意Filter类的filter 方法调用了虚方法applyFilter: inline void filter (PointCloud &output) { ...

  7. winform 对话框、打印框

    winform 对话框控件 1.打开文件对话框(OpenFileDialog) 2.保存文件对话框(SaveFileDialog) 3.字体对话框(FontDialog) 4.颜色对话框(ColorD ...

  8. 函数nvl 和decode

    decode(nvl(kkc.category, 'one'),'one','普通','two','精品','three','行业','four','白金')

  9. 数据库的Index Scan V.S. Rscan

    一直在做performance,但直到今天才完成了这个第一天应该完成的图,到底Index scan和Rscan的分界点在哪里?   如下图所示,很简单的一个查询,只是查询int,分别强制走索引和表扫描 ...

  10. 十二、Java基础---------异常处理机制

    异常 异常 异常就是程序在运行时产生的异常情况. 异常的由来 问题也是现实生活中的具体事物,也可以通过java 类的形式进行描述,并封装成对象.异常就是java 对不正常情况进行描述后的对象的体现. ...