[poj2155]Matrix(二维树状数组)
Matrix
| Time Limit: 3000MS | Memory Limit: 65536K | |
| Total Submissions: 25004 | Accepted: 9261 |
Description
We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a '0' then change it into '1' otherwise change it into '0'). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions.
1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2).
2. Q x y (1 <= x, y <= n) querys A[x, y].
Input
The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2 y2", which has been described above.
Output
There is a blank line between every two continuous test cases.
Sample Input
1
2 10
C 2 1 2 2
Q 2 2
C 2 1 2 1
Q 1 1
C 1 1 2 1
C 1 2 1 2
C 1 1 2 2
Q 1 1
C 1 1 2 1
Q 2 1
Sample Output
1
0
0
1
Source
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
int bit[][];
int n;
int lb(int x){
return x&(-x);
}
int q(int x,int y){
int ans=;
while(x){
int i=y;
while(i){
ans+=bit[x][i];
i-=lb(i);
}
x-=lb(x);
}
return ans%;
}
int c(int x,int y){
while(x<=n+){
int i=y;
while(i<=n+){
bit[x][i]++;
i+=lb(i);
}
x+=lb(x);
}
return ;
}
int main(){
int T;
scanf("%d",&T);
while(T--){
int t;
scanf("%d %d",&n,&t);
memset(bit,,sizeof(bit));
for(int i=;i<=t;i++){
char op=getchar();
while(op!='C'&&op!='Q')op=getchar();
switch(op){
case 'C':
int x1,y1,x2,y2;
scanf("%d %d %d %d",&x1,&y1,&x2,&y2);
c(x1,y1);
c(x2+,y1);
c(x1,y2+);
c(x2+,y2+);
break;
case 'Q':
int x,y;
scanf("%d %d",&x,&y);
printf("%d\n",q(x,y));
break;
default:
break;
}
}
puts("");
}
return ;
}
[poj2155]Matrix(二维树状数组)的更多相关文章
- poj----2155 Matrix(二维树状数组第二类)
Matrix Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 16950 Accepted: 6369 Descripti ...
- POJ2155:Matrix(二维树状数组,经典)
Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the ...
- 【poj2155】Matrix(二维树状数组区间更新+单点查询)
Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the ...
- poj2155一个二维树状数组
...
- POJ 2155 Matrix(二维树状数组,绝对具体)
Matrix Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 20599 Accepted: 7673 Descripti ...
- POJ 2155:Matrix 二维树状数组
Matrix Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 21757 Accepted: 8141 Descripti ...
- poj 2155 Matrix (二维树状数组)
题意:给你一个矩阵开始全是0,然后给你两种指令,第一种:C x1,y1,x2,y2 就是将左上角为x1,y1,右下角为x2,y2,的这个矩阵内的数字全部翻转,0变1,1变0 第二种:Q x1 y1,输 ...
- POJ2155【二维树状数组,区间修改,点查询?】【又被输入输出坑】
这题反反复复,到现在才过. 这道题就是树状数组的逆用,用于修改区间内容,查询点的值. 如果单纯就这个奇偶数来判的话,似乎这个思路比较好理解. 看了一下国家集训队论文(囧),<关于0与1在信息学奥 ...
- Matrix 二维树状数组的第二类应用
Matrix Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 17976 Accepted: 6737 Descripti ...
随机推荐
- book
http://www.ed2000.com/ShowFile.asp?FileID=61391 e-itbook.com
- ExtJs 使用点滴 十三 在FormPanel 嵌入按钮
Ext.onReady(function () { //初始化标签中的Ext:Qtip属性. Ext.QuickTips.init(); Ext.form.Field.prototype.msgTar ...
- php日期时间函数和数学函数
<?php //第一部分:日期和时间函数 ----------------------------- time(); //int time(void),返回当前时间的时间戳 mktime(); ...
- linux常用经典命令
1.查看cpu # 总核数 = 物理CPU个数 X 每颗物理CPU的核数 # 总逻辑CPU数 = 物理CPU个数 X 每颗物理CPU的核数 X 超线程数 # 查看物理CPU个数 #物理cpu个数 ...
- [SLAM] GMapping SLAM源码阅读(草稿)
目前可以从很多地方得到RBPF的代码,主要看的是Cyrill Stachniss的代码,据此进行理解. Author:Giorgio Grisetti; Cyrill Stachniss http: ...
- [PCL]ApproximateVoxelGrid
点云滤波继承自Filter模板类 注意Filter类的filter 方法调用了虚方法applyFilter: inline void filter (PointCloud &output) { ...
- winform 对话框、打印框
winform 对话框控件 1.打开文件对话框(OpenFileDialog) 2.保存文件对话框(SaveFileDialog) 3.字体对话框(FontDialog) 4.颜色对话框(ColorD ...
- 函数nvl 和decode
decode(nvl(kkc.category, 'one'),'one','普通','two','精品','three','行业','four','白金')
- 数据库的Index Scan V.S. Rscan
一直在做performance,但直到今天才完成了这个第一天应该完成的图,到底Index scan和Rscan的分界点在哪里? 如下图所示,很简单的一个查询,只是查询int,分别强制走索引和表扫描 ...
- 十二、Java基础---------异常处理机制
异常 异常 异常就是程序在运行时产生的异常情况. 异常的由来 问题也是现实生活中的具体事物,也可以通过java 类的形式进行描述,并封装成对象.异常就是java 对不正常情况进行描述后的对象的体现. ...