邻近算法

K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。

  • 优点:简单有效,对数据的分布不用预先假设;
  • 缺点:不能生成模型,限制了发现特性间关系的能力;

下面介绍一下kNN算法在R中的简单实现

所用数据集UCI,breast cancer

获取并查看数据集

b_c<-read.table("Breast_cancer.txt",sep=",",stringsAsFactors = F)
str(b_c)
'data.frame': 569 obs. of 32 variables:
$ V1 : int 842302 842517 84300903 84348301 84358402 843786 844359 84458202 844981 84501001 ...
$ V2 : chr "M" "M" "M" "M" ...
$ V3 : num 18 20.6 19.7 11.4 20.3 ...
$ V4 : num 10.4 17.8 21.2 20.4 14.3 ...
$ V5 : num 122.8 132.9 130 77.6 135.1 ...
$ V6 : num 1001 1326 1203 386 1297 ...
$ V7 : num 0.1184 0.0847 0.1096 0.1425 0.1003 ...
$ V8 : num 0.2776 0.0786 0.1599 0.2839 0.1328 ...
$ V9 : num 0.3001 0.0869 0.1974 0.2414 0.198 ...
$ V10: num 0.1471 0.0702 0.1279 0.1052 0.1043 ...
$ V11: num 0.242 0.181 0.207 0.26 0.181 ...
$ V12: num 0.0787 0.0567 0.06 0.0974 0.0588 ...
$ V13: num 1.095 0.543 0.746 0.496 0.757 ...
$ V14: num 0.905 0.734 0.787 1.156 0.781 ...
$ V15: num 8.59 3.4 4.58 3.44 5.44 ...
$ V16: num 153.4 74.1 94 27.2 94.4 ...
$ V17: num 0.0064 0.00522 0.00615 0.00911 0.01149 ...
$ V18: num 0.049 0.0131 0.0401 0.0746 0.0246 ...
$ V19: num 0.0537 0.0186 0.0383 0.0566 0.0569 ...
$ V20: num 0.0159 0.0134 0.0206 0.0187 0.0188 ...
$ V21: num 0.03 0.0139 0.0225 0.0596 0.0176 ...
$ V22: num 0.00619 0.00353 0.00457 0.00921 0.00511 ...
$ V23: num 25.4 25 23.6 14.9 22.5 ...
$ V24: num 17.3 23.4 25.5 26.5 16.7 ...
$ V25: num 184.6 158.8 152.5 98.9 152.2 ...
$ V26: num 2019 1956 1709 568 1575 ...
$ V27: num 0.162 0.124 0.144 0.21 0.137 ...
$ V28: num 0.666 0.187 0.424 0.866 0.205 ...
$ V29: num 0.712 0.242 0.45 0.687 0.4 ...
$ V30: num 0.265 0.186 0.243 0.258 0.163 ...
$ V31: num 0.46 0.275 0.361 0.664 0.236 ...
$ V32: num 0.1189 0.089 0.0876 0.173 0.0768 ...
> #其中第一列是ID,第二列是诊断
> b_c<-b_c[-1] #删除ID列
> table(b_c$V2) B M
357 212
> str(b_c)
'data.frame': 569 obs. of 31 variables:
$ V2 : chr "M" "M" "M" "M" ...
$ V3 : num 18 20.6 19.7 11.4 20.3 ...
$ V4 : num 10.4 17.8 21.2 20.4 14.3 ...
$ V5 : num 122.8 132.9 130 77.6 135.1 ...
$ V6 : num 1001 1326 1203 386 1297 ...
$ V7 : num 0.1184 0.0847 0.1096 0.1425 0.1003 ...
$ V8 : num 0.2776 0.0786 0.1599 0.2839 0.1328 ...
$ V9 : num 0.3001 0.0869 0.1974 0.2414 0.198 ...
$ V10: num 0.1471 0.0702 0.1279 0.1052 0.1043 ...
$ V11: num 0.242 0.181 0.207 0.26 0.181 ...
$ V12: num 0.0787 0.0567 0.06 0.0974 0.0588 ...
$ V13: num 1.095 0.543 0.746 0.496 0.757 ...
$ V14: num 0.905 0.734 0.787 1.156 0.781 ...
$ V15: num 8.59 3.4 4.58 3.44 5.44 ...
$ V16: num 153.4 74.1 94 27.2 94.4 ...
$ V17: num 0.0064 0.00522 0.00615 0.00911 0.01149 ...
$ V18: num 0.049 0.0131 0.0401 0.0746 0.0246 ...
$ V19: num 0.0537 0.0186 0.0383 0.0566 0.0569 ...
$ V20: num 0.0159 0.0134 0.0206 0.0187 0.0188 ...
$ V21: num 0.03 0.0139 0.0225 0.0596 0.0176 ...
$ V22: num 0.00619 0.00353 0.00457 0.00921 0.00511 ...
$ V23: num 25.4 25 23.6 14.9 22.5 ...
$ V24: num 17.3 23.4 25.5 26.5 16.7 ...
$ V25: num 184.6 158.8 152.5 98.9 152.2 ...
$ V26: num 2019 1956 1709 568 1575 ...
$ V27: num 0.162 0.124 0.144 0.21 0.137 ...
$ V28: num 0.666 0.187 0.424 0.866 0.205 ...
$ V29: num 0.712 0.242 0.45 0.687 0.4 ...
$ V30: num 0.265 0.186 0.243 0.258 0.163 ...
$ V31: num 0.46 0.275 0.361 0.664 0.236 ...
$ V32: num 0.1189 0.089 0.0876 0.173 0.0768 ...
> #将诊断列V2转成因子
> b_c$V2<-factor(b_c$V2,levels = c("B","M"),labels = c("B","M"))
> prop.table(table(b_c$V2)) B M
0.6274165 0.3725835
> #标准化
> bc_n<-as.data.frame(scale(b_c[,-1]))
> bc_n<-cbind(b_c[,1],bc_n)
> str(bc_n)
'data.frame': 569 obs. of 31 variables:
$ b_c[, 1]: Factor w/ 2 levels "B","M": 2 2 2 2 2 2 2 2 2 2 ...
$ V3 : num 1.096 1.828 1.578 -0.768 1.749 ...
$ V4 : num -2.072 -0.353 0.456 0.254 -1.151 ...
$ V5 : num 1.269 1.684 1.565 -0.592 1.775 ...
$ V6 : num 0.984 1.907 1.558 -0.764 1.825 ...
$ V7 : num 1.567 -0.826 0.941 3.281 0.28 ...
$ V8 : num 3.281 -0.487 1.052 3.4 0.539 ...
$ V9 : num 2.6505 -0.0238 1.3623 1.9142 1.3698 ...
$ V10 : num 2.53 0.548 2.035 1.45 1.427 ...
$ V11 : num 2.21557 0.00139 0.93886 2.86486 -0.00955 ...
$ V12 : num 2.254 -0.868 -0.398 4.907 -0.562 ...
$ V13 : num 2.488 0.499 1.228 0.326 1.269 ...
$ V14 : num -0.565 -0.875 -0.779 -0.11 -0.79 ...
$ V15 : num 2.831 0.263 0.85 0.286 1.272 ...
$ V16 : num 2.485 0.742 1.18 -0.288 1.189 ...
$ V17 : num -0.214 -0.605 -0.297 0.689 1.482 ...
$ V18 : num 1.3157 -0.6923 0.8143 2.7419 -0.0485 ...
$ V19 : num 0.723 -0.44 0.213 0.819 0.828 ...
$ V20 : num 0.66 0.26 1.42 1.11 1.14 ...
$ V21 : num 1.148 -0.805 0.237 4.729 -0.361 ...
$ V22 : num 0.9063 -0.0994 0.2933 2.0457 0.4989 ...
$ V23 : num 1.885 1.804 1.511 -0.281 1.297 ...
$ V24 : num -1.358 -0.369 -0.024 0.134 -1.465 ...
$ V25 : num 2.3 1.53 1.35 -0.25 1.34 ...
$ V26 : num 2 1.89 1.46 -0.55 1.22 ...
$ V27 : num 1.307 -0.375 0.527 3.391 0.22 ...
$ V28 : num 2.614 -0.43 1.082 3.89 -0.313 ...
$ V29 : num 2.108 -0.147 0.854 1.988 0.613 ...
$ V30 : num 2.294 1.086 1.953 2.174 0.729 ...
$ V31 : num 2.748 -0.244 1.151 6.041 -0.868 ...
$ V32 : num 1.935 0.281 0.201 4.931 -0.397 ...

设置训练集和测试集

> ind<-sample(2,nrow(bc_n),replace = T,prob=c(0.7,0.3))
> traindata<-bc_n[ind==1,]
> testdata<-bc_n[ind==2,]
> traindata_lable<-traindata[,1]
> testdata_lable<-testdata[,1]
> #安装包FNN,调用函数knn

构建模型,以循环方法选择knn算法中的k值

> library(class)

> Precesion <-as.data.frame(c(),c())  #构建空数据框
> for (i in 1:round(sqrt(nrow(traindata)))){
+ bc_pred<-knn(traindata[,-1],testdata[,-1],cl=traindata_lable,k=i)
+ precesion<-prop.table(xtabs(~testdata[,1]+bc_pred),2)[2,2]
+ temp<-cbind(i,precesion)
+ Precesion<-rbind(Precesion,temp)}
> Precesion[order(Precesion$precesion),]
i precesion
4 4 0.9420290
5 5 0.9552239
18 18 0.9682540
19 19 0.9682540
17 17 0.9687500
20 20 0.9687500
16 16 0.9692308
1 1 0.9696970
2 2 0.9696970
6 6 0.9701493
7 7 0.9701493
12 12 0.9701493
13 13 0.9701493
8 8 0.9705882
11 11 0.9705882
3 3 0.9846154
15 15 0.9846154
14 14 0.9848485
9 9 0.9850746
10 10 0.9850746

ML_R kNN的更多相关文章

  1. 【Machine Learning】KNN算法虹膜图片识别

    K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...

  2. K近邻法(KNN)原理小结

    K近邻法(k-nearst neighbors,KNN)是一种很基本的机器学习方法了,在我们平常的生活中也会不自主的应用.比如,我们判断一个人的人品,只需要观察他来往最密切的几个人的人品好坏就可以得出 ...

  3. kd树和knn算法的c语言实现

    基于kd树的knn的实现原理可以参考文末的链接,都是一些好文章. 这里参考了别人的代码.用c语言写的包括kd树的构建与查找k近邻的程序. code: #include<stdio.h> # ...

  4. k近邻算法(knn)的c语言实现

    最近在看knn算法,顺便敲敲代码. knn属于数据挖掘的分类算法.基本思想是在距离空间里,如果一个样本的最接近的k个邻居里,绝大多数属于某个类别,则该样本也属于这个类别.俗话叫,"随大流&q ...

  5. 室内定位系列(三)——位置指纹法的实现(KNN)

    位置指纹法中最常用的算法是k最近邻(kNN):选取与当前RSS最邻近的k个指纹的位置估计当前位置,简单直观有效.本文介绍kNN用于定位的基本原理与具体实现(matlab.python). 基本原理 位 ...

  6. KNN识别图像上的数字及python实现

    领导让我每天手工录入BI系统中的数据并判断数据是否存在异常,若有异常点,则检测是系统问题还是业务问题.为了解放双手,我决定写个程序完成每天录入管理驾驶舱数据的任务.首先用按键精灵录了一套脚本把系统中的 ...

  7. k近邻(KNN)复习总结

    摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 6.适用场合内容: 1.算法概述 K近邻算法是一种基本分类和回归方法:分类时,根据其K个最近邻的训练实例的类 ...

  8. KNN算法

    1.算法讲解 KNN算法是一个最基本.最简单的有监督算法,基本思路就是给定一个样本,先通过距离计算,得到这个样本最近的topK个样本,然后根据这topK个样本的标签,投票决定给定样本的标签: 训练过程 ...

  9. 【十大经典数据挖掘算法】kNN

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 引言 顶级数据挖掘会议ICDM ...

随机推荐

  1. MATLAB自定义配置

    1.设置默认工作路径 一般来说MATLAB的默认工作路径是安装目录下的bin目录,但是,把这个作为自己的工作目录很不方便,以为里面已经有很多安装文件了,容易混淆: 每次打开再更改路径又太麻烦,所以最好 ...

  2. 让AutoMapper更好用

    AutoMapper Dto与EF实体之间的转换用AutoMapper会变的很方便.很高效,是大多数项目的选择.博主本人的项目也在使用AutoMapper这个组件 好用归好用,但是想要把它用好又是另一 ...

  3. CentOS安装MongoDB

    1. touch /etc/yum.repos.d/mongodb.repo vi /etc/yum.repos.d/mongodb.repo [mongodb]        name=MongoD ...

  4. [转]Zookeeper原理及应用场景

    ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,它包含一个简单的原语集,分布式应用程序可以基于它实现同步服务,配置维护和命名服务等.Zookeeper是hadoop的一个子项目,其 ...

  5. oracle建表并设置ID为自动增长

    CREATE TABLESPACE shopping DATAFILE 'D:\oracle\mypc\oradata\orcl\shopping.dbf' SIZE 20M AUTOEXTEND O ...

  6. K米交流会现场图

  7. Beta版本冲刺第四天 12.10

    一.站立式会议照片: 二.项目燃尽图: Android端 后台 三.项目进展: 成 员 昨天完成任务 今天完成任务 明天要做任务 问题困难 心得体会 胡泽善 日期合理性的判断,一个是用户反馈的查看 管 ...

  8. Linux进程关闭和后台运行解析

    1.问题背景 Java是跨平台的,大部分程序也都是在Linux服务器上运行的.但是很多朋友其实对服务器了解并不多,对相关知识也是一知半解.很多概念可能知道,但是并不十分清楚,仅仅是基本运用.可能很多新 ...

  9. 安装和使用Linux花生壳(公网版)

    一.安装说明 1.下载相应的安装包,安装程序 2.运行程序.配置程序(默认使用/etc/phlinux.conf,如果不存在这个文件则自动进入交互配置) [root@localhost -]# phd ...

  10. SQL总结二

    一.基础 1.说明:创建数据库 CREATE DATABASE database-name 2.说明:删除数据库 drop database dbname 3.说明:备份sql server --- ...