POJ 1815 Friendship(最小割)
id=1815
|
Friendship
Description
In modern society, each person has his own friends. Since all the people are very busy, they communicate with each other only by phone. You can assume that people A can keep in touch with people B, only if
1. A knows B's phone number, or 2. A knows people C's phone number and C can keep in touch with B. It's assured that if people A knows people B's number, B will also know A's number. Sometimes, someone may meet something bad which makes him lose touch with all the others. For example, he may lose his phone number book and change his phone number at the same time. In this problem, you will know the relations between every two among N people. To make it easy, we number these N people by 1,2,...,N. Given two special people with the number S and T, when some people meet bad things, S may lose touch with T. Your job is to compute the minimal number of people that can make this situation happen. It is supposed that bad thing will never happen on S or T. Input
The first line of the input contains three integers N (2<=N<=200), S and T ( 1 <= S, T <= N , and S is not equal to T).Each of the following N lines contains N integers. If i knows j's number, then the j-th number in the (i+1)-th line will be 1, otherwise the
number will be 0. You can assume that the number of 1s will not exceed 5000 in the input. Output
If there is no way to make A lose touch with B, print "NO ANSWER!" in a single line. Otherwise, the first line contains a single number t, which is the minimal number you have got, and if t is not zero, the second line is needed, which contains t integers in
ascending order that indicate the number of people who meet bad things. The integers are separated by a single space. If there is more than one solution, we give every solution a score, and output the solution with the minimal score. We can compute the score of a solution in the following way: assume a solution is A1, A2, ..., At (1 <= A1 < A2 <...< At <=N ), the score will be (A1-1)*N^t+(A2-1)*N^(t-1)+...+(At-1)*N. The input will assure that there won't be two solutions with the minimal score. Sample Input 3 1 3 Sample Output 1 Source |
题意:
给出无向图,1表示有边,0表示没有边。如今要消去一些点,使得给出的A,B两点不相连,A和B不校区。问最少消去多少个点,并升序输出方案,有多种方案则输出 (A1-1)*N^t+(A2-1)*N^(t-1)+...+(At-1)*N最小的方案。
分析:
无向图中消去最少的点使两点割开。能够使用最小割求解。
将一个点拆成入点和出点,之间连一条容量为一的边。
图中原有的边依照出->入连一条容量为无穷大的边,A的出点为源点。B的入点为汇点。求出其最小割即为要消去的点的数量。
详细方案的输出看上去比較复杂,细致分析实际上是一个N进制数。使这个数最小,就是其“字典序”最小。
我们从小到大枚举每个点,假设将这个点(这个点拆出的边)去掉后的最小割小于原最小割,那么这个点(这个点拆出的边)属于最小割集。如此便可求出最后的结果。
那么是不是每一个点都一定要枚举吗?我们考虑例如以下命题:最小割集中的边是满流边;其逆命题:满流边是最小割集中的边,别想了,这显然是否定的;其逆否命题:非满流边一定不属于最小割集,这才是我们要的命题。也就是说假设一个点拆出的边不满流,那它一定不构成最小割,所以这个点我们根本不用check。
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<algorithm>
#include<ctime>
#include<cctype>
#include<cmath>
#include<string>
#include<cstring>
#include<stack>
#include<queue>
#include<list>
#include<vector>
#include<map>
#include<set>
#define sqr(x) ((x)*(x))
#define LL long long
#define itn int
#define INF 0x3f3f3f3f
#define PI 3.1415926535897932384626
#define eps 1e-10
#define maxm 200007
#define maxn 404 using namespace std; int fir[maxn];
int u[maxm],v[maxm],cap[maxm],flow[maxm],nex[maxm];
int e_max;
int iter[maxn],q[maxn],lv[maxn]; void add_edge(int _u,int _v,int _w)
{
int e;
e=e_max++;
u[e]=_u;v[e]=_v;cap[e]=_w;
nex[e]=fir[u[e]];fir[u[e]]=e;
e=e_max++;
u[e]=_v;v[e]=_u;cap[e]=0;
nex[e]=fir[u[e]];fir[u[e]]=e;
} void dinic_bfs(int s)
{
int f,r;
memset(lv,-1,sizeof lv);
q[f=r=0]=s;
lv[s]=0;
while(f<=r)
{
int x=q[f++];
for (int e=fir[x];~e;e=nex[e])
{
if (cap[e]>flow[e] && lv[v[e]]<0)
{
lv[v[e]]=lv[u[e]]+1;
q[++r]=v[e];
}
}
}
} int dinic_dfs(int _u,int t,int _f)
{
if (_u==t) return _f;
for (int &e=iter[_u];~e;e=nex[e])
{
if (cap[e]>flow[e] && lv[_u]<lv[v[e]])
{
int _d=dinic_dfs(v[e],t,min(_f,cap[e]-flow[e]));
if (_d>0)
{
flow[e]+=_d;
flow[e^1]-=_d;
return _d;
}
}
} return 0;
} int max_flow(int s,int t)
{ memset(flow,0,sizeof flow);
int total_flow=0; for (;;)
{
dinic_bfs(s);
if (lv[t]<0) return total_flow;
memcpy(iter,fir,sizeof iter);
int _f; while ((_f=dinic_dfs(s,t,INF))>0)
total_flow+=_f;
} return total_flow;
} int that_edge[maxn]; int main()
{
#ifndef ONLINE_JUDGE
freopen("/home/fcbruce/文档/code/t","r",stdin);
#endif // ONLINE_JUDGE int n,_u,_v,_w,s,t; scanf("%d%d%d",&n,&_u,&_v);
s=_u+n;t=_v;
e_max=0;
memset(fir,-1,sizeof fir); for (int i=1;i<=n;i++)
{
for (int j=1;j<=n;j++)
{
scanf("%d",&_w);
if (!_w) continue;
if (i==_u && j==_v || i==_v && j==_u)
{
printf("NO ANSWER!\n");
return 0;
}
add_edge(i+n,j,INF);
}
} for (int i=1;i<=n;i++)
{
that_edge[i]=e_max;
add_edge(i,i+n,1);
} int temp=max_flow(s,t);
bool first=false;
printf("%d\n",temp); for (int i=1;i<=n && temp;i++)
{
if (i==s-n || i==t) continue;
if (!flow[that_edge[i]]) continue;//最小割边一定满流,考虑逆否命题。不满流的边一定不是最小割边
cap[that_edge[i]]=0; int k=max_flow(s,t);
if (k<temp)
{
if (first) putchar(' ');
first=true;
printf("%d",i);
}
else
cap[that_edge[i]]=1;
temp=k;
} putchar('\n'); return 0;
}
POJ 1815 Friendship(最小割)的更多相关文章
- poj 1815 Friendship (最小割+拆点+枚举)
题意: 就在一个给定的无向图中至少应该去掉几个顶点才干使得s和t不联通. 算法: 假设s和t直接相连输出no answer. 把每一个点拆成两个点v和v'',这两个点之间连一条权值为1的边(残余容量) ...
- poj 1815(最小割、割集)
题目链接:http://poj.org/problem?id=1815 思路:题目要求是剔除多少个点,可以将其转化为剔除多少条边,因此需要拆点,将点i拆成i,i+n,便容量为1,表示每个人起的传递作用 ...
- POJ - 1815 Friendship (最小点割集)
(点击此处查看原题) 题目分析 题意:有n个人,编号记为1~n,n个人之间可能有人可以互相联系,如果A能和B联系,那么至少满足这两种情况之一:(1)A知道B的电话(2)A可以和C联系,并且C可以和B联 ...
- POJ 1815 Friendship(字典序最小的最小割)
Friendship Time Limit: 2000MS Memory Limit: 20000K Total Submissions: 10744 Accepted: 2984 Descr ...
- poj 1815 Friendship 字典序最小+最小割
题目链接:http://poj.org/problem?id=1815 In modern society, each person has his own friends. Since all th ...
- POJ 1815 Friendship (Dinic 最小割)
Friendship Time Limit: 2000MS Memory Limit: 20000K Total Submissions: 8025 Accepted: 2224 Descri ...
- POJ 1815 Friendship(最小割+字典序输出割点)
http://poj.org/problem?id=1815 题意: 在现代社会,每个人都有自己的朋友.由于每个人都很忙,他们只通过电话联系.你可以假定A可以和B保持联系,当且仅当:①A知道B的电话号 ...
- poj 1815 Friendship【最小割】
网络流的题总是出各种奇怪的错啊--没写过邻接表版的dinic,然后bfs扫到t点不直接return 1就会TTTTTLE-- 题目中的操作是"去掉人",很容易想到拆点,套路一般是( ...
- POJ 1815 Friendship ★(字典序最小点割集)
[题意]给出一个无向图,和图中的两个点s,t.求至少去掉几个点后才能使得s和t不连通,输出这样的点集并使其字典序最大. 不错的题,有助于更好的理解最小割和求解最小割的方法~ [思路] 问题模型很简单, ...
随机推荐
- ArrayAdapter、SimpleAdapter和BaseAdapter示例代码
import android.content.Context; import android.util.Pair; import android.view.View; import android.v ...
- npm依赖管理:冗余,依赖树
npm的依赖树查询:原理都是查询文件夹node_modules的结构.比如mac的node_modules位置在/usr/local/lib下.具体项目的node_modules位置位于项目根目录下. ...
- C#之Hello World(入门 )
C#是一种简单.现代.面向对象和类型安全的编程语言. C#由C和C++发展而来.C#(英文发音C sharp)牢固地植根于C和C++语言族谱中,是Microsoft专门为使用.NET平台而创建的. • ...
- vue-resource的使用中需要注意的坑
先看一段代码: export default { name: 'app', data() { return { articles: [] } }, created: function() { this ...
- javascript 正则表达式判断只能是中文、英文或者中文加英文
var reglx =/^[\u4e00-\u9fa5a-zA-Z]+$/ 这个是至少有一个中文或者英文 var reglx =/^[\u4e00-\u9fa5a-zA-Z]*$/ 这个是0个以上的中 ...
- ETL技术入门之ETL初认识
ETL是什么 ETL是Extract Transform Load三个英文单词的缩写 中文意思就是抽取.转换.载入.说到ETL就必须提到数据仓库. 先说下背景知识: 信息是现代企业的重要资源,是企业运 ...
- python抓包截取http记录日志
#!/usr/bin/python import pcap import dpkt import re def main(): pc=pcap.pcap(name="eth1" ...
- mysqli 实例
1.封装数据库连接(connect.php): <?php // 封装数据库连接 // 设置页面编码声明 header("Content-type: text/html; charse ...
- javascript获取日期的年,月,日
var date = new Date(strTime); return date.getFullYear()+"-"+(date.getMonth()+1)+"-&qu ...
- Java基于注解和反射导入导出Excel
代码地址如下:http://www.demodashi.com/demo/11995.html 1. 构建项目 使用Spring Boot快速构建一个Web工程,并导入与操作Excel相关的POI包以 ...