Codeforces Round #391 div1 757F (Dominator Tree)
首先先膜杜教orz
这里简单说一下支配树的概念
支配树是对一个有向图来讲的
规定一个起点s,如果s到v的路径上必须经过某些点u,那么离s最近的点u就是v的支配点
在树上的关系就是,v的父亲是u。
一般图的支配树需要使用tarjan算法,但是如果有向图是没有环的,可以采用另一种做法
按照拓扑序建立支配树,每次加点的时候,枚举能到它的所有点,求它们在当前支配树的最近公共祖先,那个点就是该点的支配点
这个题先建立一个最短路图,易知,这个图是没有环的有向图,所以建立支配树的时候就可以采用以上做法
orz 膜杜教代码,写得太飘逸了
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <set>
//对pair的一种有效快捷的利用
#define fi first
#define se second
#define mp make_pair
using namespace std; typedef long long ll;
const int maxn = ;
ll dis[maxn];
int vis[maxn], ord[maxn], deep[maxn], sz[maxn];
int p[maxn][];
//dij时用的堆
set <pair<ll, int> > hs;
//利用pair简化邻接表
vector < pair<int, ll>> e[maxn];
const ll inf = 1ll<<;
void Dijk(int S, int n)
{
for(int i = ; i <= n; i++) dis[i] = inf, vis[i] = ;
dis[S] = ;
for(int i = ; i <= n; i++) hs.insert(mp(dis[i], i));
for(int i = ; i < n; i++)
{
int u = (hs.begin())->se; hs.erase(hs.begin());
vis[u] = ; ord[i] = u; //求最短路时顺便得到拓扑序orz
for(int j = ; j < e[u].size(); j++)
{
int v = e[u][j].fi;
if(dis[v] > dis[u] + e[u][j].se)
{
hs.erase(mp(dis[v], v));
dis[v] = dis[u] + e[u][j].se;
hs.insert(mp(dis[v], v));
}
}
}
} int lca(int u, int v) //二进制倍增求LCA
{
if(deep[u] > deep[v]) swap(u, v);
for(int i = ; i >= ; i--) if(deep[p[v][i]] >= deep[u]) v = p[v][i];
if(u == v) return u;
for(int i = ; i >= ; i--) if(p[v][i] != p[u][i]) u = p[u][i], v = p[v][i];
return p[u][];
}
int n, m, s, u, v, w;
int main()
{
//freopen("a.txt", "r", stdin);
cin>>n>>m>>s;
for(int i = ; i <= m; i++)
{
cin>>u>>v>>w;
e[u].push_back(mp(v, w));
e[v].push_back(mp(u, w));
}
Dijk(s, n);
p[s][] = ; deep[s] = ;
//构建最短路图的过程并建立支配树
for(int i = ; i <= n; i++)
{
int d = -, u = ord[i];
for(auto p : e[u])
{
if(dis[p.fi] + p.se == dis[u])
{
if(d == -) d = p.fi;
else d = lca(d, p.fi);
}
}
p[u][] = d; deep[u] = deep[d]+;
for(int j = ; j < ; j++) p[u][j] = p[p[u][j-]][j-]; //动态更新公共祖先
}
for(int i = ; i <= n; i++) sz[i] = ;
int ret = ;
for(int i = n-; i >= ; i--) //按照拓扑序dp求最大值
{
u = ord[i];
sz[p[u][]] += sz[u];
if(dis[u] <= (1ll<<)) ret = max(ret, sz[u]);
}
cout<<ret<<endl;
}
Codeforces Round #391 div1 757F (Dominator Tree)的更多相关文章
- Codeforces Round #543 Div1题解(并不全)
Codeforces Round #543 Div1题解 Codeforces A. Diana and Liana 给定一个长度为\(m\)的序列,你可以从中删去不超过\(m-n*k\)个元素,剩下 ...
- Codeforces Round #545 Div1 题解
Codeforces Round #545 Div1 题解 来写题解啦QwQ 本来想上红的,结果没做出D.... A. Skyscrapers CF1137A 题意 给定一个\(n*m\)的网格,每个 ...
- Codeforces Round #539 Div1 题解
Codeforces Round #539 Div1 题解 听说这场很适合上分QwQ 然而太晚了QaQ A. Sasha and a Bit of Relax 翻译 有一个长度为\(n\)的数组,问有 ...
- Codeforces Round #499 (Div. 1) F. Tree
Codeforces Round #499 (Div. 1) F. Tree 题目链接 \(\rm CodeForces\):https://codeforces.com/contest/1010/p ...
- [Codeforces Round #254 div1] C.DZY Loves Colors 【线段树】
题目链接:CF Round #254 div1 C 题目分析 这道题目是要实现区间赋值的操作,同时还要根据区间中原先的值修改区间上的属性权值. 如果直接使用普通的线段树区间赋值的方法,当一个节点表示的 ...
- Educational Codeforces Round 6 E. New Year Tree dfs+线段树
题目链接:http://codeforces.com/contest/620/problem/E E. New Year Tree time limit per test 3 seconds memo ...
- Codeforces Round #353 (Div. 2) D. Tree Construction 二叉搜索树
题目链接: http://codeforces.com/contest/675/problem/D 题意: 给你一系列点,叫你构造二叉搜索树,并且按输入顺序输出除根节点以外的所有节点的父亲. 题解: ...
- Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA链上最大值
E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...
- Codeforces Round #540 (Div. 3)--1118F1 - Tree Cutting (Easy Version)
https://codeforces.com/contest/1118/problem/F1 #include<bits/stdc++.h> using namespace std; in ...
随机推荐
- Docker运行Nginx服务器
一.获取Docker容器的Nginx镜像 二.创建Docker容器宿主机挂载目录 # 创建挂载目录,-v 显示创建的目录名 [root@idclooknet ~]# mkdir -vp /opt/do ...
- 如何理解NaN?
NaN这个特殊的Number与所有其他值都不相等,包括它自己: NaN===NaN: //false 唯一能判断NaN的方法是通过isNaN()函数: isNaN(NaN); //tr ...
- Lavavel5.5源代码 - 并发数控制
app('redis')->connection('default')->funnel('key000') // 每个资源最大锁定10秒自动过期,只有60个资源(并发),在3秒内获取不到锁 ...
- Python3 os模块&sys模块&hashlib模块
''' os模块 非常重要的模块 ''' import os # print(os.getcwd()) # 获取当前工作目录 # os.chdir(r'路径名') # 改变当前工作目录 # print ...
- (数据科学学习手札20)主成分分析原理推导&Python自编函数实现
主成分分析(principal component analysis,简称PCA)是一种经典且简单的机器学习算法,其主要目的是用较少的变量去解释原来资料中的大部分变异,期望能将现有的众多相关性很高的变 ...
- windows 系统禁止使用 U 盘的方法
windows 系统禁止使用 U 盘的方法 最简单的办法: 注册表 [HKEY_LOCAL_MACHINE\SYSTEM\CurrentCntrolSet\Services\USBSTOR] 将名为 ...
- React+DvaJS 之 hook 路由权限控制
博客 学院 下载 GitChat TinyMind 论坛 APP 问答 商城 VIP 活动 招聘 ITeye 写博客 发Chat 登录注册 原 React+DvaJS 之 hook 路由权限控制 20 ...
- .NET基础知识之七——索引器
索引器是什么?有什么作用?索引器允许类的实例以访问数组的形式来访问对象里面的属性.如我们经常可以看到类似于dr["name"]="test",或者 ...
- TortoiseHg 学习笔记一
因项目需要频繁的提交.合并代码,前段时间别人在我笔记本上装了个TortoiseHg,我不怎么会用 现在学习一下,目前没时间写太多东西,未完待续 记录一下查看的文章 http://jingyan.bai ...
- MQTT 开源代理mosquitto的网络层封装相当sucks
最近学习MQTT协议,选择了当前比较流行的MQTT Broker “mosquitto”,但是在阅读代码过程中发现其网络底层库封装的相当差劲. 对于MQTT协议的变长头长度的读取上,基本上采取每次一个 ...