题目描述

追逐影子的人,自己就是影子 ——荷马

Allison 最近迷上了文学。她喜欢在一个慵懒的午后,细细地品上一杯卡布奇诺,静静地阅读她爱不释手的《荷马史诗》。但是由《奥德赛》和《伊利亚特》 组成的鸿篇巨制《荷马史诗》实在是太长了,Allison 想通过一种编码方式使得它变得短一些。

一部《荷马史诗》中有n种不同的单词,从1到n进行编号。其中第i种单 词出现的总次数为wi。Allison 想要用k进制串si来替换第i种单词,使得其满足如下要求:

对于任意的 1 ≤ i, j ≤ n , i ≠ j ,都有:si不是sj的前缀。

现在 Allison 想要知道,如何选择si,才能使替换以后得到的新的《荷马史诗》长度最小。在确保总长度最小的情况下,Allison 还想知道最长的si的最短长度是多少?

一个字符串被称为k进制字符串,当且仅当它的每个字符是 0 到 k − 1 之间(包括 0 和 k − 1 )的整数。

字符串 str1 被称为字符串 str2 的前缀,当且仅当:存在 1 ≤ t ≤ m ,使得str1 = str2[1..t]。其中,m是字符串str2的长度,str2[1..t] 表示str2的前t个字符组成的字符串。

输入输出格式

输入格式:

输入的第 1 行包含 2 个正整数 n, k ,中间用单个空格隔开,表示共有 n种单词,需要使用k进制字符串进行替换。

接下来n行,第 i + 1 行包含 1 个非负整数wi ,表示第 i 种单词的出现次数。

输出格式:

输出包括 2 行。

第 1 行输出 1 个整数,为《荷马史诗》经过重新编码以后的最短长度。

第 2 行输出 1 个整数,为保证最短总长度的情况下,最长字符串 si 的最短长度。

输入输出样例

输入样例#1:

4 2
1
1
2
2
输出样例#1:

12
2
输入样例#2:

6 3
1
1
3
3
9
9
输出样例#2:

36
3

说明

【样例说明 1】

用 X(k) 表示 X 是以 k 进制表示的字符串。

一种最优方案:令 00(2) 替换第 1 种单词, 01(2) 替换第 2 种单词, 10(2) 替换第 3 种单词,11(2) 替换第 4 种单词。在这种方案下,编码以后的最短长度为:

1 × 2 + 1 × 2 + 2 × 2 + 2 × 2 = 12

最长字符串si的长度为 2 。

一种非最优方案:令 000(2) 替换第 1 种单词,001(2) 替换第 2 种单词,01(2)替换第 3 种单词,1(2) 替换第 4 种单词。在这种方案下,编码以后的最短长度为:

1 × 3 + 1 × 3 + 2 × 2 + 2 × 1 = 12

最长字符串 si 的长度为 3 。与最优方案相比,文章的长度相同,但是最长字符串的长度更长一些。

【样例说明 2】

一种最优方案:令 000(3) 替换第 1 种单词,001(3) 替换第 2 种单词,01(3) 替换第 3 种单词, 02(3) 替换第 4 种单词, 1(3) 替换第 5 种单词, 2(3) 替换第 6 种单词。

【提示】

选手请注意使用 64 位整数进行输入输出、存储和计算。

Solution:

  本题哈夫曼树裸题。

  给定一个$k$叉树,每个单词的出现次数$w_1,w_2…w_n$为$n$个叶子节点的权值,最后合并成一个节点就等价于把所有叶子节点替换掉。而题意中的用$k$进制串去替换,我们可以将每个节点的$k$个分叉由$0\rightarrow k-1$编号,那么根节点到某一叶子节点的路径所表示的$k$进制串就是替换掉该叶子节点的串,且它对于答案的贡献(串的长度)恰好就是该叶子节点合并的次数。然后题目中的限制条件$s_i$不为$s_j$的前缀,其实只要把整棵哈夫曼树看作一个$Trie$树,那么就不难发现$s_i$的前缀的末节点一定为根节点到某一叶节点的路径所经过的内部节点,而我们实现哈夫曼树时,一个串的末节点肯定是树的叶子节点,所以该性质一定能满足。至于求最长的$s_i$最短,其实就是使得树的最大深度最小(叶子节点合并次数最大值最小),不难想到一个贪心,就是当出现多个$w_i$相同时,优先合并深度小的,这样就能解决该问题。

代码:

#include<bits/stdc++.h>
#define il inline
#define ll long long
#define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(int (i)=(b);(i)>=(a);(i)--)
using namespace std;
ll n,k,ans,minn;
struct node{
ll w,d;
node(ll a,ll b){w=a;d=b;}
bool operator<(const node &a)const {return w==a.w?d>a.d:w>a.w;}
};
priority_queue<node>q; il ll gi(){
ll a=;char x=getchar();bool f=;
while((x<''||x>'')&&x!='-')x=getchar();
if(x=='-')x=getchar(),f=;
while(x>=''&&x<='')a=(a<<)+(a<<)+x-,x=getchar();
return f?-a:a;
} int main(){
n=gi(),k=gi();
ll p=(n-)%(k-),tot;
if(p) p=k--p;
ll m=n+p;
while(p--) q.push(node(,));
while(n--) p=gi(),q.push(node(p,));
while(!q.empty()){
if(m==)break;
tot=,p=;
For(i,,k) tot+=q.top().w,p=max(p,q.top().d),q.pop();
q.push(node(tot,p+));ans+=tot;
m-=(k-);
}
cout<<ans<<endl<<q.top().d;
return ;
}

P2168 [NOI2015]荷马史诗的更多相关文章

  1. 洛谷 P2168 [NOI2015]荷马史诗 解题报告

    P2168 [NOI2015]荷马史诗 题目描述 追逐影子的人,自己就是影子 --荷马 Allison 最近迷上了文学.她喜欢在一个慵懒的午后,细细地品上一杯卡布奇诺,静静地阅读她爱不释手的<荷 ...

  2. 洛谷P2168 [NOI2015] 荷马史诗 [哈夫曼树]

    题目传送门 荷马史诗 Description 追逐影子的人,自己就是影子. ——荷马 Allison 最近迷上了文学.她喜欢在一个慵懒的午后,细细地品上一杯卡布奇诺,静静地阅读她爱不释手的<荷马 ...

  3. 并不对劲的bzoj4198:loj2132:uoj130:p2168:[NOI2015]荷马史诗

    题目大意 有\(n\)(\(n\leq10^5\))种单词,其中第\(i\)种单词在文章中的出现次数为\(w_i\) 要将每个单词替换成一个字符集为\(k\)(\(k\leq9\))的字符串,使对于任 ...

  4. P2168 [NOI2015]荷马史诗 k叉哈夫曼树

    思路:哈夫曼编码 提交:1次(参考题解) 题解:类似合并果子$QwQ$ 取出前$k$小(注意如果叶子结点不满的话要补全),合并起来再扔回堆里去. #include<cstdio> #inc ...

  5. Luogu P2168 [NOI2015]荷马史诗

    题目 哈夫曼树的每个叶子结点都有一个权值(表示某数据的出现频率),且\(\sum dis_ival_i\)最小. 哈夫曼树中,权值和越大的集合离根节点越近. 而每个数据对应从根节点到该叶子结点的一种编 ...

  6. 洛谷$P2168\ [NOI2015]$荷马史诗 贪心

    正解:贪心 解题报告: 传送门$QwQ$ 昂这个就哈夫曼树板子题鸭$QwQ$,只是从二叉变成多叉了$QwQ$ 考虑用类似合并果子的方法?就从两个变成$k$个了嘛,一样的鸭,然后就做完了$QwQ$ 注意 ...

  7. 洛谷P2168 [NOI2015] 荷马史诗 (哈夫曼树)

    学了哈夫曼树这道题还是好想的,基本上和构造哈夫曼树的思路一样,但是题目要求最长si的最小值,所以用两个关键字的堆,第一关键字是把出现次数作为权值,第二关键字表示从该节点开始的最长长度,权值相同时,选择 ...

  8. [BZOJ4198][Noi2015]荷马史诗

    4198: [Noi2015]荷马史诗 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 700  Solved: 365[Submit][Status] ...

  9. BZOJ_4198_[Noi2015]荷马史诗_huffman实现

    BZOJ_4198_[Noi2015]荷马史诗_huffman实现 题意: Allison 最近迷上了文学.她喜欢在一个慵懒的午后,细细地品上一杯卡布奇诺,静静地阅读她爱不释手的<荷马史诗> ...

随机推荐

  1. springmvc处理器拦截器

    处理器拦截器(interceptor)是做什么用的? 想知道处理拦截器做什么用的,你要先了解下处理·流程链·. 前端控制器(dispatcherServlet)接收到请求,通过handleMappin ...

  2. Python 一些好玩的函数

    一.匿名函数 什么匿名是函数: 不需要使用def函数名的函数或者子程序 函数语法: lambda 参数:表达式 函数特点: 1.lambda只是一个表达式,省去定义函数过程,让代码更精简 2.lamb ...

  3. SSM框架搭建步骤

    首先要导入相关的jar包(spring\spring-core\spring-jdbc\spring-aop\spring-context\spring-webmvc\junit\commons-la ...

  4. 初学tiny4412

    1.解压友善之臂提供的uboot make tiny4412_config make 然后将sd卡插到电脑上,编辑虚拟机,选择对应的usb口(usb3.0兼容),如果没有usb3.0,可能是虚拟机版本 ...

  5. go学习笔记-函数

    函数 定义 格式 func function_name( [parameter list] ) [return_types] { 函数体 } 解析 func:函数由 func 开始声明 functio ...

  6. sqlserver 数据查询效率优化

    首先优化是具体情况具体分析,从硬件.改进表结构.索引.改进sql查询语句.存储方式都有关系等多方面入手 比如单表数据量(100w-200w条)不大的情况下,查询效率慢 可以从优化sql语句.对多个排序 ...

  7. html5学得好不好,看掌握多少标签

    html5学得好不好,看掌握多少标签 已回复 会员ID:wi701329 保密 62岁 时间:2016-06-28 06:52:49 html5你了解了多少?如果你还是入门阶段的话,或者还是一知半解的 ...

  8. C++怎么用二维数组作为形参传入

    原文地址:http://blog.csdn.net/xuleicsu/article/details/919801 如何将二维数组作为函数的参数传递 今天写程序的时候要用到二维数组作参数传给一个函数, ...

  9. Android Google Maps 监听地图缩放

    接上篇.http://www.cnblogs.com/maomishen/p/3556297.html 由于公司项目要求,需要对google map监听地图的缩放(zoom)来进行一些操作. 但是在网 ...

  10. JMeter-取样器

    JMeter取样器: 1.右键点击新建的线程组,选择Add---->Sampler---->HTTP Request:(如图) 2.新建取样器之后的界面如图: 3.根据上图中的数字标识解释 ...