题目链接

[A - Tricky Sum ]

In this problem you are to calculate the sum of all integers from 1 to n, but you should take all powers of two with minus in the sum.

For example, for n = 4 the sum is equal to  - 1 - 2 + 3 - 4 =  - 4, because 1, 2 and 4 are 20, 21 and 22 respectively.

Calculate the answer for t values of n.

Input

The first line of the input contains a single integer t (1 ≤ t ≤ 100) — the number of values of n to be processed.

Each of next t lines contains a single integer n (1 ≤ n ≤ 109).

Output

Print the requested sum for each of t integers n given in the input.

Examples

Input

2

4

1000000000

Output

-4

499999998352516354

Note

The answer for the first sample is explained in the statement.

#include<cstdio>
#include<string>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<cstring>
#include<set>
#include<queue>
#include<algorithm>
#include<vector>
#include<map>
#include<cctype>
#include<stack>
#include<sstream>
#include<list>
#include<assert.h>
#include<bitset>
#include<numeric>
#define debug() puts("++++")
#define gcd(a,b) __gcd(a,b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a,b,sizeof(a))
#define sz size()
#define be begin()
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
#define all 1,n,1
#define rep(i,x,n) for(int i=(x); i<(n); i++)
#define in freopen("in.in","r",stdin)
#define out freopen("out.out","w",stdout)
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e18;
const int maxn = 1e6 + 20;
const int maxm = 1e6 + 10;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int dx[] = {-1,1,0,0,1,1,-1,-1};
const int dy[] = {0,0,1,-1,1,-1,1,-1};
int dir[4][2] = {{0,1},{0,-1},{-1,0},{1,0}};
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
int t,m;
LL n;
int a[maxn];
int main()
{
scanf("%d",&t);
while(t--)
{
LL sum=0;
cin>>n;
sum = n*(n+1)/2; //先不管正负都加起来,即前n项和,有公式
for(int i=0; pow(2,i)<=n; i++)
sum-=(2*pow(2,i)); //减两次2的幂,那么一次抵消,一次真正减去
cout<<sum<<endl;
}
}

[B - Queries about less or equal elements ]

You are given two arrays of integers a and b. For each element of the second array bj you should find the number of elements in array a that are less than or equal to the value bj.

Input

The first line contains two integers n, m (1 ≤ n, m ≤ 2·105) — the sizes of arrays a and b.

The second line contains n integers — the elements of array a ( - 109 ≤ ai ≤ 109).

The third line contains m integers — the elements of array b ( - 109 ≤ bj ≤ 109).

Output

Print m integers, separated by spaces: the j-th of which is equal to the number of such elements in array a that are less than or equal to the value bj.

Examples

Input

5 4

1 3 5 7 9

6 4 2 8

Output

3 2 1 4

Input

5 5

1 2 1 2 5

3 1 4 1 5

Output

4 2 4 2 5

【二分】:求在第一个数组a中小于第二个数组b中的数的个数、即a数组排序后中可以插入的位置。

#include<cstdio>
#include<string>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<cstring>
#include<set>
#include<queue>
#include<algorithm>
#include<vector>
#include<map>
#include<cctype>
#include<stack>
#include<sstream>
#include<list>
#include<assert.h>
#include<bitset>
#include<numeric>
#define debug() puts("++++")
#define gcd(a,b) __gcd(a,b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a,b,sizeof(a))
#define sz size()
#define be begin()
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
#define all 1,n,1
#define rep(i,x,n) for(int i=(x); i<(n); i++)
#define in freopen("in.in","r",stdin)
#define out freopen("out.out","w",stdout)
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e18;
const int maxn = 1e6 + 20;
const int maxm = 1e6 + 10;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int dx[] = {-1,1,0,0,1,1,-1,-1};
const int dy[] = {0,0,1,-1,1,-1,1,-1};
int dir[4][2] = {{0,1},{0,-1},{-1,0},{1,0}};
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
int t,m,n;
int a[maxn];
int b[maxn];
int x[maxn];
int main()
{
scanf("%d%d",&n,&m); int pos,k=0;
ms(a,0);
ms(b,0);
for(int i=0;i<n;i++)
{
scanf("%d",&a[i]);
}
sort(a,a+n);
for(int i=0;i<m;i++)
{
scanf("%d",&b[i]);
}
int flag=1;
for(int i=0;i<m;i++)
{
pos = upper_bound(a,a+n,b[i])-a;
if(flag) {cout<<pos;flag=0;}
else cout<<' '<<pos;
} }

C - 极角

You are given the set of vectors on the plane, each of them starting at the origin. Your task is to find a pair of vectors with the minimal non-oriented angle between them.

Non-oriented angle is non-negative value, minimal between clockwise and counterclockwise direction angles. Non-oriented angle is always between 0 and π. For example, opposite directions vectors have angle equals to π.

Input

First line of the input contains a single integer n (2 ≤ n ≤ 100 000) — the number of vectors.

The i-th of the following n lines contains two integers xi and yi (|x|, |y| ≤ 10 000, x2 + y2 > 0) — the coordinates of the i-th vector. Vectors are numbered from 1 to n in order of appearing in the input. It is guaranteed that no two vectors in the input share the same direction (but they still can have opposite directions).

Output

Print two integer numbers a and b (a ≠ b) — a pair of indices of vectors with the minimal non-oriented angle. You can print the numbers in any order. If there are many possible answers, print any.

Examples

Input

4

-1 0

0 -1

1 0

1 1

Output

3 4

Input

6

-1 0

0 -1

1 0

1 1

-4 -5

-4 -6

Output

6 5

【题意】:有n个点,每个点表示原点到该点的向量,让你求出两个向量最小的夹角,输出向量的序号

【分析】:该题需要用到高精度计算角度的方法.用atan2(y,x)能够求出每个点与x轴正向的夹角,进行排序,

在从小到大枚举角度,注意最后一个角度(最大角)和第一个角度(最小角)的角度差可能是负值,要加上2*PI

#include<cstdio>
#include<string>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<cstring>
#include<set>
#include<queue>
#include<algorithm>
#include<vector>
#include<map>
#include<cctype>
#include<stack>
#include<sstream>
#include<list>
#include<assert.h>
#include<bitset>
#include<numeric>
#define debug() puts("++++")
#define gcd(a,b) __gcd(a,b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a,b,sizeof(a))
#define sz size()
#define be begin()
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
#define all 1,n,1
#define rep(i,x,n) for(int i=(x); i<(n); i++)
#define in freopen("in.in","r",stdin)
#define out freopen("out.out","w",stdout)
using namespace std;
typedef long long LL;
typedef long double ld; typedef unsigned long long ULL;
typedef pair<int,int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e18;
const int maxn = 1e6 + 20;
const int maxm = 1e6 + 10;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int dx[] = {-1,1,0,0,1,1,-1,-1};
const int dy[] = {0,0,1,-1,1,-1,1,-1};
int dir[4][2] = {{0,1},{0,-1},{-1,0},{1,0}};
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
int n;
struct node
{
ld x,y,id; //需要记录位置又要排序,故设置id }a[maxn];
bool cmp(node p1,node p2) //按照极角排序
{
return atan2(p1.y,p1.x) < atan2(p2.y,p2.x);
}
int main()
{
scanf("%d",&n);
rep(i,0,n)
{
cin>>a[i].x>>a[i].y;
a[i].id=i;
}
sort(a,a+n,cmp);
ld ans=PI*100; //扩大100倍防止精度问题,不影响答案,答案是记录位置
int x, y;
a[n]=a[0];//因为是圆,首位相连
for(int i=1;i<=n;i++)
{
ld t = atan2(a[i].y,a[i].x) - atan2(a[i-1].y,a[i-1].x);
if(t<0) t += 2*PI; //负数则+360°
if(ans>t) //求出最大角度
{
ans=t;
x=a[i].id; //排序后相邻
y=a[i-1].id;
}
}
cout<<x+1<<' '<<y+1<<endl;
}

E - Mafia

One day n friends gathered together to play "Mafia". During each round of the game some player must be the supervisor and other n - 1 people take part in the game. For each person we know in how many rounds he wants to be a player, not the supervisor: the i-th person wants to play ai rounds. What is the minimum number of rounds of the "Mafia" game they need to play to let each person play at least as many rounds as they want?

Input

The first line contains integer n (3 ≤ n ≤ 105). The second line contains n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 109) — the i-th number in the list is the number of rounds the i-th person wants to play.

Output

In a single line print a single integer — the minimum number of game rounds the friends need to let the i-th person play at least ai rounds.

Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.

Examples

Input

3

3 2 2

Output

4

Input

4

2 2 2 2

Output

3

Note

You don't need to know the rules of "Mafia" to solve this problem. If you're curious, it's a game Russia got from the Soviet times: http://en.wikipedia.org/wiki/Mafia_(party_game).

【题意】:其实也就是有n个人在玩游戏,这个游戏有一个规则就是每局必须有一个主持,(n-1)名选手其中第i个人表示想玩a[i]局游戏且不当主持;让求出满足每人要求的最少的局数:

#include<cstdio>
#include<string>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<cstring>
#include<set>
#include<queue>
#include<algorithm>
#include<vector>
#include<map>
#include<cctype>
#include<stack>
#include<sstream>
#include<list>
#include<assert.h>
#include<bitset>
#include<numeric>
#define debug() puts("++++")
#define gcd(a,b) __gcd(a,b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a,b,sizeof(a))
#define sz size()
#define be begin()
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
#define all 1,n,1
#define rep(i,x,n) for(int i=(x); i<(n); i++)
#define in freopen("in.in","r",stdin)
#define out freopen("out.out","w",stdout)
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e18;
const int maxn = 1e6 + 20;
const int maxm = 1e6 + 10;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int dx[] = {-1,1,0,0,1,1,-1,-1};
const int dy[] = {0,0,1,-1,1,-1,1,-1};
int dir[4][2] = {{0,1},{0,-1},{-1,0},{1,0}};
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
int n;
LL a,sum,Max;
//最大化平均值
bool check(LL x) //二分局数
{
//局数*(n-1)人>=总局数
return x*(n-1)>=sum;
}
int main()
{
while(~scanf("%d", &n))
{
Max=sum=0;
rep(i,0,n)
{
scanf("%I64d", &a);
sum+=a;
Max=max(Max,a);
}
LL l,r,mid,ans;
l=Max, r=sum;
//朋友需要的最小游戏轮数,让第i个玩家至少玩ai轮次
while(l<=r)
{
mid = (l+r)/2;
if(check(mid)) r = mid-1,ans=mid;//最小化,由于单调增,合法后越小越左靠
else l = mid+1;
}
printf("%I64d\n",ans);
}
return 0;
} /*
其实也就是有n个人在玩游戏,
这个游戏有一个规则就是每局必须有一个主持,(n-1)名选手
其中第i个人表示想玩a[i]局游戏且不当主持;让求出满足每人要求的最少的局数:
*/

7/25 CSU-ACM2018暑假集训比赛1的更多相关文章

  1. CSU-ACM2018暑假集训比赛1

    A:https://www.cnblogs.com/yinbiao/p/9365127.html B:https://www.cnblogs.com/yinbiao/p/9365171.html C: ...

  2. STL 入门 (17 暑假集训第一周)

    快速全排列的函数 头文件<algorithm> next_permutation(a,a+n) ---------------------------------------------- ...

  3. 2015UESTC 暑假集训总结

    day1: 考微观经济学去了…… day2: 一开始就看了看一道题目最短的B题,拍了半小时交了上去wa了 感觉自己一定是自己想错了,于是去拍大家都过的A题,十分钟拍完交上去就A了 然后B题写了一发暴力 ...

  4. 暑假集训Day2 互不侵犯(状压dp)

    这又是个状压dp (大型自闭现场) 题目大意: 在N*N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. ...

  5. 暑假集训Day1 整数划分

    题目大意: 如何把一个正整数N(N长度<20)划分为M(M>=1)个部分,使这M个部分的乘积最大.N.M从键盘输入,输出最大值及一种划分方式. 输入格式: 第一行一个正整数T(T<= ...

  6. 暑假集训第一周比赛C题

    http://acm.hust.edu.cn/vjudge/contest/view.action?cid=83146#problem/C C - 学 Crawling in process... C ...

  7. 暑假集训第一周比赛G题

    http://acm.hust.edu.cn/vjudge/contest/view.action?cid=83146#problem/G G - 向 Crawling in process... C ...

  8. 2013ACM暑假集训总结-致将走上大三征途的我

    回想起这个暑假,从开始与雄鹰一起的纠结要不要进集训队,与吉吉博博组队参加地大邀请赛,害怕进不了集训队.当时激励我月份开始接触的,记得当时在弄运动会来着,然后就问了雄鹰一些输入输出的东西,怀着满心的期待 ...

  9. ECJTU大一暑假集训

    第二场比赛:一签到题没做出来!!!死活不远做下去了,开始发狂,最后还有2个半小时开始做别的,陆续A了几道:  我还能怪谁呢,我渣,我傻逼,就这样!! 7/19:早就想自己建一个博客了,也就是一直想想没 ...

随机推荐

  1. 将CRUD封装到一个工具类中

    package org.zln.hibernate.utils; import org.hibernate.Session; import org.hibernate.SessionFactory; ...

  2. 隐马尔可夫模型HMM

    隐马尔可夫模型HMM的探究 1 HMM基本概念1.1 定义1.2 观测序列生成过程1.3 HMM的三个问题2 概率计算算法2.1 直接计算算法2.2 前向算法forward algorithm2.3 ...

  3. 【bzoj3856】Monster 乱搞

    题目描述 你要打一只h点血的怪物,每回合你攻击会造成a点伤害,回合结束后怪物会回b点血,你每攻击k回合需要休息一次,该回合不能造成伤害.怪物血量降到0以下就会死亡,问最后能否打死怪物. 输入 Ther ...

  4. JVM GC Q&A(补充ing)

    1.如果一个对象没有与其相连的GC ROOT,一定会被回收吗? 这个对象并非是非死不可的,这时他只是处于死缓阶段,要真正宣告一个对象的死亡,至少要经历两次标记过程:如果对象在进行可达性分析后发现并没有 ...

  5. vue.js 三种方式安装--npm安装

    Vue.js是一个构建数据驱动的 web 界面的渐进式框架.     Vue.js 的目标是通过简单的 API 实现响应的数据绑定和组合的视图组件.它不仅易上手,便于与第三方库或既有项目整合.     ...

  6. CodeIgniter自带的数据库类使用介绍

    在 CodeIgniter 中,使用数据库是非常频繁的事情.你可以使用框架自带的数据库类,就能便捷地进行数据库操作. 初始化数据库类 依据你的数据库配置载入并初始化数据库类: view source ...

  7. Different Integers 牛客多校第一场只会签到题

    Given a sequence of integers a1, a2, ..., an and q pairs of integers (l1, r1), (l2, r2), ..., (lq, r ...

  8. Spring 学习笔记(三)之注解

    一.在classpath下扫描组件 •组件扫描(component scanning):  Spring 能够从 classpath 下自动扫描, 侦测和实例化具有特定注解的组件. •特定组件包括: ...

  9. Linux : 多线程下载工具: axel

    wget 应该是最常用的下载工具了,但是其不支持多线程下载. axel 安装 epel 源有 axel 的二进制包,可以使用 yum 安装. yum install epel-release yum ...

  10. bzoj 1045糖果传递 数学贪心

    首先我们假设平均数为ave 那么对于第1个人,我们假设他给第N个人K个糖果,第2个人给1,第3个人给2,第n个人给第n-1个人 那么对于第1个人给完n,第2个人给完1,第一个人不会再改变糖果数了,所以 ...