最长上升子序列(LIS)
最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS。
排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了。
假设存在一个序列d[1..9] = 2 1 5 3 6 4 8 9 7,可以看出来它的LIS长度为5。n
下面一步一步试着找出它。
我们定义一个序列B,然后令 i = 1 to 9 逐个考察这个序列。
此外,我们用一个变量Len来记录现在最长算到多少了
首先,把d[1]有序地放到B里,令B[1] = 2,就是说当只有1一个数字2的时候,长度为1的LIS的最小末尾是2。这时Len=1
然后,把d[2]有序地放到B里,令B[1] = 1,就是说长度为1的LIS的最小末尾是1,d[1]=2已经没用了,很容易理解吧。这时Len=1
接着,d[3] = 5,d[3]>B[1],所以令B[1+1]=B[2]=d[3]=5,就是说长度为2的LIS的最小末尾是5,很容易理解吧。这时候B[1..2] = 1, 5,Len=2
再来,d[4] = 3,它正好加在1,5之间,放在1的位置显然不合适,因为1小于3,长度为1的LIS最小末尾应该是1,这样很容易推知,长度为2的LIS最小末尾是3,于是可以把5淘汰掉,这时候B[1..2] = 1, 3,Len = 2
继续,d[5] = 6,它在3后面,因为B[2] = 3, 而6在3后面,于是很容易可以推知B[3] = 6, 这时B[1..3] = 1, 3, 6,还是很容易理解吧? Len = 3 了噢。
第6个, d[6] = 4,你看它在3和6之间,于是我们就可以把6替换掉,得到B[3] = 4。B[1..3] = 1, 3, 4, Len继续等于3
第7个, d[7] = 8,它很大,比4大,嗯。于是B[4] = 8。Len变成4了
第8个, d[8] = 9,得到B[5] = 9,嗯。Len继续增大,到5了。
最后一个, d[9] = 7,它在B[3] = 4和B[4] = 8之间,所以我们知道,最新的B[4] =7,B[1..5] = 1, 3, 4, 7, 9,Len = 5。
于是我们知道了LIS的长度为5。
!!!!! 注意。这个1,3,4,7,9不是LIS,它只是存储的对应长度LIS的最小末尾。有了这个末尾,我们就可以一个一个地插入数据。虽然最后一个d[9] = 7更新进去对于这组数据没有什么意义,但是如果后面再出现两个数字 8 和 9,那么就可以把8更新到d[5], 9更新到d[6],得出LIS的长度为6。
然后应该发现一件事情了:在B中插入数据是有序的,而且是进行替换而不需要挪动——也就是说,我们可以使用二分查找,将每一个数字的插入时间优化到O(logN)~~~~~于是算法的时间复杂度就降低到了O(NlogN)~!
下面给出核心代码
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<stack>
#include<queue>
#include<iostream>
#include<map>
#include<vector>
#define Inf 0x3f3f3f3f
#define PI acos(-1.0)
using namespace std;
int str[];
int ans[];
int dp[][];
int len=;
int main()
{
int m,n,i,j,pos;
while(scanf("%d",&m)!=-)
{ len=;
for(i=; i<=m; i++)
{
scanf("%d",&str[i]);
}
ans[len]=str[];
for(i=;i<=m;i++)
{
if(str[i]>ans[len])
{
ans[++len]=str[i];
}
else
{
pos=lower_bound(ans,ans+len,str[i]) - ans; ans[pos]=str[i];
//printf("%d\n",ans[pos]);
}
}
cout<<len+<<endl;
}
return ;
}
最长上升子序列(LIS)的更多相关文章
- 2.16 最长递增子序列 LIS
[本文链接] http://www.cnblogs.com/hellogiser/p/dp-of-LIS.html [分析] 思路一:设序列为A,对序列进行排序后得到B,那么A的最长递增子序列LIS就 ...
- 最长上升子序列LIS(51nod1134)
1134 最长递增子序列 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递 ...
- 动态规划(DP),最长递增子序列(LIS)
题目链接:http://poj.org/problem?id=2533 解题报告: 状态转移方程: dp[i]表示以a[i]为结尾的LIS长度 状态转移方程: dp[0]=1; dp[i]=max(d ...
- 【部分转载】:【lower_bound、upperbound讲解、二分查找、最长上升子序列(LIS)、最长下降子序列模版】
二分 lower_bound lower_bound()在一个区间内进行二分查找,返回第一个大于等于目标值的位置(地址) upper_bound upper_bound()与lower_bound() ...
- 题解 最长上升子序列 LIS
最长上升子序列 LIS Description 给出一个 1 ∼ n (n ≤ 10^5) 的排列 P 求其最长上升子序列长度 Input 第一行一个正整数n,表示序列中整数个数: 第二行是空格隔开的 ...
- 最长回文子序列LCS,最长递增子序列LIS及相互联系
最长公共子序列LCS Lintcode 77. 最长公共子序列 LCS问题是求两个字符串的最长公共子序列 \[ dp[i][j] = \left\{\begin{matrix} & max(d ...
- 一个数组求其最长递增子序列(LIS)
一个数组求其最长递增子序列(LIS) 例如数组{3, 1, 4, 2, 3, 9, 4, 6}的LIS是{1, 2, 3, 4, 6},长度为5,假设数组长度为N,求数组的LIS的长度, 需要一个额外 ...
- 1. 线性DP 300. 最长上升子序列 (LIS)
最经典单串: 300. 最长上升子序列 (LIS) https://leetcode-cn.com/problems/longest-increasing-subsequence/submission ...
- 最长上升子序列(LIS)模板
最长递增(上升)子序列问题:在一列数中寻找一些数,这些数满足:任意两个数a[i]和a[j],若i<j,必有a[i]<a[j],这样最长的子序列称为最长递增(上升)子序列. 考虑两个数a[x ...
- hdu1025 dp(最长上升子序列LIS)
题意:有一些穷国和一些富国分别排在两条直线上,每个穷国和一个富国之间可以建道路,但是路不能交叉,给出每个穷国和富国的联系,求最多能建多少条路 我一开始在想有点像二分图匹配orz,很快就发现,当我把穷国 ...
随机推荐
- selenium2中关于Python的常用函数
driver = webdriver.Chrome(chromeDriver) 1.返回当前会话中的cookies:driver.get_cookies() 2.根据cookies name查找:dr ...
- L130
Trump Administration Backs Asian-Americans in Harvard CaseThe United States Justice Department on Th ...
- Android 进阶10:进程通信之 Messenger 使用与解析
读完本文你将了解: Messenger 简介 Messenger 的使用 服务端 客户端 运行效果 使用小结 总结 代码地址 Thanks 前面我们介绍了 AIDL 的使用与原理,这篇文章来介绍下 A ...
- Markdown博文快速转为微信文章
介绍 技术博文在CSDN上,全是Markdown格式,最近看各位大佬又是个人网站又是个人微信公众号,突然发现: "个人博客小站 + 个人微信公众号 + CSDN + 掘金+ - = 程序员标 ...
- pg确定一张表最后被使用的时间
create or replace function table_file_access_info( IN schemaname text,IN tablename text,OUT last_acc ...
- 前端之css样式02
一.float属性 block元素通常被现实为独立的一块,独占一行,多个block元素会各自新起一行,默认block元素宽度自动填满其父元素宽度.block元素可以设置width.height.mar ...
- haroopad 语法高亮问题
<!DOCTYPE html> Untitled.html div.oembedall-githubrepos{border:1px solid #DDD;border-radius:4p ...
- bulkcopy实现批量插入与更新
public static void UpdateData<T>(List<T> list, string TabelName) { DataTable dt = new Da ...
- 基于epoll的TP传输层实现
1. 抽象TP传输层设计 在使用epoll实现实际的传输层之前,先设计一个抽象的传输层,这个抽象的传输层是传输层实现的接口层. 接口层中一共有以下几个通用的类或者接口: (1)Socket:通用的套接 ...
- 剑指offer-第七章面试案例1(字符串转换为整型)
//将字符串转换为整型 //思路:特殊的输入测试: //1,考虑字符串是否为空.2.字符串问空的时候的返回0,和真实的返回0直键的区别.3,字符串中出现0~9的字符处理 //4.字符串中出现*,¥等一 ...