题目描述

对于全国各大大学的男生寝室,总是有各种混乱的父子关系。

那么假设现在我们一个男生寝室有不同的 nn 个人,每个人都至多有一个“爸爸”,可以有多个“儿子”,且有且只有一个人没有“爸爸”(毕竟是室长,还是要给点面子,当然了,室长人人当嘛)。

那么现在问题来了,对于一个有 nn 个人的寝室,最多可能存在多少种父子关系,当然每个人之间都必须要有直接或间接的父子关系。

输入输出格式

输入格式:

第一行一个 正整数 tt,表示有组数据。

接下来 tt 行,每行一个整数 nn,表示有 nn 个人。

输出格式:

共 tt 行,每行一个整数,求关系个数。

由于答案可能较大,则我们需要输出答案对 1e9+91e9+9 取模的值。

输入输出样例

输入样例#1:

1
3
输出样例#1:

9
输入样例#2:

1
323
输出样例#2:

283888610

说明

  • 对于 10\%10% 的数据,保证 t=0t=0;

  • 另有 30\%30% 的数据,保证 n≤5n≤5;

  • 对于 100\%100% 的数据,t≤10^4t≤104,n≤10^9n≤109。

算法讨论:

Cayley公式是说,一个完全图K_n有n^(n-2)棵生成树,换句话说n个节点的带标号的无根树有n^(n-2)个。今天我学到了Cayley公式的一个非常简单的证明,证明依赖于Prüfer编码,它是对带标号无根树的一种编码方式。
    给定一棵带标号的无根树,找出编号最小的叶子节点,写下与它相邻的节点的编号,然后删掉这个叶子节点。反复执行这个操作直到只剩两个节点为止。由于节点数n>2的树总存在叶子节点,因此一棵n个节点的无根树唯一地对应了一个长度为n-2的数列,数列中的每个数都在1到n的范围内。下面我们只需要说明,任何一个长为n-2、取值范围在1到n之间的数列都唯一地对应了一棵n个节点的无根树,这样我们的带标号无根树就和Prüfer编码之间形成一一对应的关系,Cayley公式便不证自明了。
    注意到,如果一个节点A不是叶子节点,那么它至少有两条边;但在上述过程结束后,整个图只剩下一条边,因此节点A的至少一个相邻节点被去掉过,节点A的编号将会在这棵树对应的Prüfer编码中出现。反过来,在Prüfer编码中出现过的数字显然不可能是这棵树(初始时)的叶子。于是我们看到,没有在Prüfer编码中出现过的数字恰好就是这棵树(初始时)的叶子节点。找出没有出现过的数字中最小的那一个(比如④),它就是与Prüfer编码中第一个数所标识的节点(比如③)相邻的叶子。接下来,我们递归地考虑后面n-3位编码(别忘了编码总长是n-2):找出除④以外不在后n-3位编码中的最小的数(左图的例子中是⑦),将它连接到整个编码的第2个数所对应的节点上(例子中还是③)。再接下来,找出除④和⑦以外后n-4位编码中最小的不被包含的数,做同样的处理……依次把③⑧②⑤⑥与编码中第3、4、5、6、7位所表示的节点相连。最后,我们还有①和⑨没处理过,直接把它们俩连接起来就行了。由于没处理过的节点数总比剩下的编码长度大2,因此我们总能找到一个最小的没在剩余编码中出现的数,算法总能进行下去。这样,任何一个Prüfer编码都唯一地对应了一棵无根树,有多少个n-2位的Prüfer编码就有多少个带标号的无根树。

一个有趣的推广是,n个节点的度依次为D1, D2, …, Dn的无根树共有(n-2)! / [ (D1-1)!(D2-1)!..(Dn-1)! ]个,因为此时Prüfer编码中的数字i恰好出现Di-1次。

一个有向完全图的生成树个数则是n^(n-1)个

 #include <cstdio>
#include <cstring>
#include <iostream>
#define LL long long
using namespace std;
int T;
LL n;
LL mo=1e9+; LL ksm(LL a,LL b){
LL q=,base=a;
while(b){
if (b&) q*=base,q%=mo;
base*=base;
base%=mo;
b>>=;
}
return q;
} int main(){
scanf("%d",&T);
while(T--){
scanf("%lld",&n);
printf("%lld\n",ksm(n,n-)%mo);
}
}

洛谷 T51922 父子的更多相关文章

  1. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

  2. 洛谷.2042.[NOI2005]维护数列(Splay)

    题目链接 2017.12.24 第一次写: 时间: 2316ms (1268ms) 空间: 19.42MB (19.5MB)(O2) 注:洛谷测的时间浮动比较大 /* 插入一段数:将这些数先单独建一棵 ...

  3. 洛谷P3348 [ZJOI2016]大森林(LCT,虚点,树上差分)

    洛谷题目传送门 思路分析 最简单粗暴的想法,肯定是大力LCT,每个树都来一遍link之类的操作啦(T飞就不说了) 考虑如何优化算法.如果没有1操作,肯定每个树都长一样.有了1操作,就来仔细分析一下对不 ...

  4. 洛谷P3960 列队(NOIP2017)(Splay)

    洛谷题目传送门 最弱的Splay...... 暴力模拟30分(NOIP2017实际得分,因为那时连Splay都不会)...... 发现只是一个点从序列里搬到了另一个位置,其它点的相对位置都没变,可以想 ...

  5. 在洛谷3369 Treap模板题 中发现的Splay详解

    本题的Splay写法(无指针Splay超详细) 前言 首先来讲...终于调出来了55555...调了整整3天..... 看到大部分大佬都是用指针来实现的Splay.小的只是按照Splay的核心思想和原 ...

  6. c++并查集配合STL MAP的实现(洛谷P2814题解)

    不会并查集的话请将此文与我以前写的并查集一同食用. 原题来自洛谷 原题 文字稿在此: 题目背景 现代的人对于本家族血统越来越感兴趣. 题目描述 给出充足的父子关系,请你编写程序找到某个人的最早的祖先. ...

  7. 洛谷比赛 「EZEC」 Round 4

    洛谷比赛 「EZEC」 Round 4 T1 zrmpaul Loves Array 题目描述 小 Z 有一个下标从 \(1\) 开始并且长度为 \(n\) 的序列,初始时下标为 \(i\) 位置的数 ...

  8. 洛谷1640 bzoj1854游戏 匈牙利就是又短又快

    bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...

  9. 洛谷P1352 codevs1380 没有上司的舞会——S.B.S.

    没有上司的舞会  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond       题目描述 Description Ural大学有N个职员,编号为1~N.他们有 ...

随机推荐

  1. 玩得一手好注入之order by排序篇

    看了之前Gr36_前辈在先知上的议题,其中有提到排序注入,这个在最近经常遇到这样的问题,所以先总结下order by 排序注入的知识. 0×00 背景 看了之前Gr36_前辈在先知上的议题,其中有提到 ...

  2. DOS下启动MySQL时输入net start mysql 提示服务名无效的问题

    原因:mysql服务名错误. 正确做法:net start  +mysql服务名

  3. Computer Hardware

    Computer Hardware Para 1 Computer hardware can be divides into four categories: input hardware, stor ...

  4. BZOJ1856:[SCOI2010]字符串(卡特兰数,组合数学)

    Description lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgw ...

  5. POJ 3070 矩阵快速幂

    题意:求菲波那切数列的第n项. 分析:矩阵快速幂. 右边的矩阵为a0 ,a1,,, 然后求乘一次,就进一位,求第n项,就是矩阵的n次方后,再乘以b矩阵后的第一行的第一列. #include <c ...

  6. UVA11294 Wedding

    嘟嘟嘟 大佬们都说这是2-SAT入门题,然而对于刚学2_SAT的本菜鸡来说半天才理解…… 题面:新娘和新郎不能坐在同一侧,妻子和丈夫不能坐在同一侧,有**关系的两个人必须至少一个坐在新娘一侧,问方案. ...

  7. Idea 配置 Database 组件的MySql数据库连接

    1.选择MySql

  8. ubuntu 网桥配置

    vim /etc/network/interfaces auto lo iface lo inet loopback auto eth0 auto eth2 auto eth3 iface eth0 ...

  9. sql中 decode() 的用法

    sql中 decode() 的用法 SELECT ID,DECODE(inParam,'Param','value1' ,'value2') name FROM yytj2018 如果 inParam ...

  10. react setState修改嵌套对象

    在react使用setState过程中,难免会遇到复杂的数据类型,,这里还要提醒一下setState 是异步操作行为,需要setState之后的结果做为参数,请求数据的话,可以配合 async  aw ...