algoritm.in / algoritm.out

Even though he isn't a student of computer science, Por Costel the pig has started to study Graph Theory. Today he's learning about Bellman-Ford, an algorithm that calculates the minimum cost path from a source node (for instance, node 1) to all the other nodes in a directed graph with weighted edges. Por Costel, utilizing his scarce programming knowledge has managed to scramble the following code in C++, a variation of the Bellman-Ford algorithm:

You can notice a lot of deficiencies in the above code. In addition to its rudimentary documentation, we can see that Por Costel has stored this graph as an array of edges (the array ). An edge is stored as the triplet  signifying an edge that spans from  to  and has weight . But even worse is the fact that the algorithm is SLOW!

As we want our hooved friend to walk away with a good impression about computer science, we want his code to execute as FAST as possible. In order to do so, we can modify the order of edges in the array  so that the while loop executes a small number of times.

Given a directed graph of  nodes and  edges, you are asked to produce an ordering of the edges such that the Bellman-Ford algorithm written by Por Costel should finish after at most two iterations of the while loop(that is, the program should enter the while loop at most twice).

Input

The first line of the file algoritm.in will contain an integer  , the number of test cases.

Each of the  test cases has the following format: on the first line, there are two numbers  and  (), the number of nodes and the number of edges in the graph respectively.

The next  lines describe the edges, each containing three integers  signifying there is an edge from node  to node  with weight  ()

It is guaranteed that node  has at least one outgoing edge.

The graph may contain self loops and/or multiple edges.

Output

The output file algoritm.out should contain  lines representing the answers to each test case.

For each test case you should output a permutation of numbers from  to , representing the order of the edges you want in Por Costel's array of edges .

The edges are considered indexed by the order in which they are given in the input (the -th edge read is the edge with index ).

If there are multiple solutions, you are allowed to print any of them.

Example

Input
1
4 4
1 2 1
3 4 2
2 3 3
1 3 1
Output
1 4 2 3

题意就是一个傻逼写了个最短路,问你怎么将输入的graph的边排序,使得他的最短路只跑一次。

显然先跑在最短路径树上的边,再跑其他的边,就只需要一次了。

必须用堆dijkstra,好像卡了spfa。

#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
typedef long long ll;
#define INF 1000000000007ll
#define N 100010
#define M 200010
struct Point{ll d;int u;
Point(const ll &X,const int &Y){d=X;u=Y;}
Point(){}};
int T,n,m;
int cnt;
bool operator < (Point a,Point b){return a.d>b.d;}
priority_queue<Point>q;
int v[M],__next[M],first[N],w[M],e;
int fa[N],fam[N];
ll d[N];
void AddEdge(int U,int V,int W)
{
v[++e]=V;
w[e]=W;
__next[e]=first[U];
first[U]=e;
}
bool vis[N],intree[M];
void dijkstra(int S)
{
for(int i=1;i<=n;++i) d[i]=INF;
d[S]=0; q.push(Point(0,S));
while(!q.empty())
{
Point x=q.top(); q.pop();
if(!vis[x.u])
{
vis[x.u]=1;
for(int i=first[x.u];i;i=__next[i])
if(d[v[i]]>d[x.u]+(ll)w[i])
{
d[v[i]]=d[x.u]+(ll)w[i];
fa[v[i]]=x.u;
intree[fam[v[i]]]=0;
fam[v[i]]=i;
intree[i]=1;
q.push(Point(d[v[i]],v[i]));
}
}
}
}
void dfs(int U)
{
for(int i=first[U];i;i=__next[i])
if(intree[i])
{
++cnt;
printf("%d%c",i,cnt==m ? '\n' : ' ');
dfs(v[i]);
}
}
int main()
{
freopen("algoritm.in","r",stdin);
freopen("algoritm.out","w",stdout);
//freopen("b.in","r",stdin);
int x,y,z;
scanf("%d",&T);
for(;T;--T)
{
cnt=e=0;
memset(v,0,sizeof(v));
memset(w,0,sizeof(w));
memset(__next,0,sizeof(__next));
memset(first,0,sizeof(first));
memset(fa,0,sizeof(fa));
memset(fam,0,sizeof(fam));
memset(d,0,sizeof(d));
memset(vis,0,sizeof(vis));
memset(intree,0,sizeof(intree));
scanf("%d%d",&n,&m);
for(int i=1;i<=m;++i)
{
scanf("%d%d%d",&x,&y,&z);
AddEdge(x,y,z);
}
dijkstra(1);
dfs(1);
for(int i=1;i<=m;++i)
if(!intree[i])
{
++cnt;
printf("%d%c",i,cnt==m ? '\n' : ' ');
}
}
return 0;
}

【Heap-dijkstra】Gym - 100923B - Por Costel and the Algorithm的更多相关文章

  1. 【找规律】Gym - 100923L - Por Costel and the Semipalindromes

    semipal.in / semipal.out Por Costel the pig, our programmer in-training, has recently returned from ...

  2. 【分块打表】Gym - 100923K - Por Costel and the Firecracker

    semipal.in / semipal.out Por Costel the pig, our programmer in-training, has recently returned from ...

  3. 【数形结合】Gym - 100923I - Por Costel and the Pairs

    perechi3.in / perechi3.out We don't know how Por Costel the pig arrived at FMI's dance party. All we ...

  4. 【并查集】Gym - 100923H - Por Costel and the Match

    meciul.in / meciul.out Oberyn Martell and Gregor Clegane are dueling in a trial by combat. The fight ...

  5. 【动态规划】Gym - 100923A - Por Costel and Azerah

    azerah.in / azerah.out Por Costel the Pig has received a royal invitation to the palace of the Egg-E ...

  6. 【带权并查集】Gym - 100923H - Por Costel and the Match

    裸题. 看之前的模版讲解吧,这里不再赘述了. #include<cstdio> #include<cstring> using namespace std; int fa[10 ...

  7. 【NOI导刊200908模拟试题02 题4】【二分+Dijkstra】 收费站

    Description 在某个遥远的国家里,有n个城市.编号外1,2,3,-,n. 这个国家的政府修建了m条双向的通路.每条公路连接着两个城市.沿着某条公路,开车从一个城市到另一个城市,需要花费一定的 ...

  8. 【拓扑排序】【线段树】Gym - 101102K - Topological Sort

    Consider a directed graph G of N nodes and all edges (u→v) such that u < v. It is clear that this ...

  9. 【每日dp】 Gym - 101889E Enigma 数位dp 记忆化搜索

    题意:给你一个长度为1000的串以及一个数n 让你将串中的‘?’填上数字 使得该串是n的倍数而且最小(没有前导零) 题解:dp,令dp[len][mod]为是否出现过 填到第len位,余数为mod 的 ...

随机推荐

  1. json解析之jackson

    对于json格式的数据解析现在越来越多了,之前介绍了两种:fastjson和net.sf.json解析. 今天又有一个jackson解析.不过相对于之前两种,这种感觉稍微笨拙些.呵呵,还是了解下吧: ...

  2. rsync安装使用详解

    rsync是类unix系统下的数据镜像备份工具,从软件的命名上就可以看出来了——remote sync.它的特性如下: 可以镜像保存整个目录树和文件系统. 可以很容易做到保持原来文件的权限.时间.软硬 ...

  3. es6+最佳入门实践(12)

    12.class基础用法和继承 12.1.class基础语法 在es5中,面向对象我们通常写成这样 function Person(name,age) { this.name = name; this ...

  4. @RequestBody和@RequestParam、@ResponseBody的使用

    一:前沿 针对spring mvc的使用,其实我不怎么熟悉的,因为我只是会用几个常用的注解,其他高深的我都不是很清楚的,而且每次用有时候还需要出查资料的,现在自己记载下吧. 二:内容 (1)这里的@R ...

  5. 解决tomcat不支持中文路径的问题

    问题描述: 开发文件下载功能时,因为需求比较简单,要求下载一个说明文件.于是,直接给出了文件所在服务器的地址,通过链接直接下载此文件(因需求简单,未考虑安全方面的问题-_-||). 在这个过程中,文件 ...

  6. CentOs7安装JDK/Tomcat/Git/Gradle

    安装Jdk: wget http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/j ...

  7. bzoj3790 manacher算法+贪心

    紧跟jk大佬的步伐 这道题哇 因为机器一能生成回文串 所以我们只要用manacher跑一遍求出q[i]这样就把问题转化成了类似线段覆盖的题目 贪心就好了 至于,BIT优化dp我不会所以直接贪心了 注意 ...

  8. [bzoj3231][SDOI2008]递归数列——矩阵乘法

    题目大意: 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj和 cj ...

  9. bzoj 2151 贪心

    几乎完全类似于1150的思路,直接参考那个就行了. http://www.cnblogs.com/BLADEVIL/p/3527193.html /************************** ...

  10. JavaScript BOM基础