Link:https://www.lydsy.com/JudgeOnline/problem.php?id=2809

Algorithm:

很容易看出此题贪心的思路:

只要在每个点的子树中贪心选取费用最小的,使其总和不超过m即可

维护最小值,想到用堆,但普通的堆无法进行合并

于是用到数据结构可并堆/左偏树来在O(logN)的时间内合并堆

可并堆和左偏树的区别仅仅在于左偏树多维护了dist数组,而可并堆是无脑交换左右子树

这也使得左偏树的复杂度是能证明的O(logN),而可并堆仅仅是均摊复杂度为O(logN),因此还是尽量用左偏树吧

证明:n个节点的左偏树的距离dist最大为log(n+1)-1

若左偏树的距离为一定值,则节点数最少的左偏树是完全二叉树。

设一棵左偏树的距离为k,则这棵左偏树至少有2^{k+1}-1个节点

因为n>=2^{k+1}-1,所以k<=log(n+1)-1

Code:

左偏树:

#include <bits/stdc++.h>

using namespace std;
typedef long long ll; inline int read()
{
char ch;int num,f=;
while(!isdigit(ch=getchar())) f|=(ch=='-');
num=ch-'';
while(isdigit(ch=getchar())) num=num*+ch-'';
return f?-num:num;
} const int MAXN=1e5+;
vector<int> G[MAXN];
struct LTree
{
int ls,rs,dist,val;
ll siz,sum;
}Lt[MAXN]; int n,m,C[MAXN],L[MAXN],root[MAXN];
ll res=; int merge(int x,int y)
{
if(!x || !y) return x+y;
if(Lt[x].val<Lt[y].val) swap(x,y);
Lt[x].rs=merge(Lt[x].rs,y); if(Lt[Lt[x].ls].dist<Lt[Lt[x].rs].dist) swap(Lt[x].ls,Lt[x].rs);
Lt[x].dist=Lt[Lt[x].rs].dist+;
Lt[x].siz=Lt[Lt[x].rs].siz+Lt[Lt[x].ls].siz+;
Lt[x].sum=Lt[Lt[x].rs].sum+Lt[Lt[x].ls].sum+Lt[x].val; return x;
} void pop(int &x)
{
x=merge(Lt[x].ls,Lt[x].rs);
} void dfs(int x)
{
root[x]=x;
for(int i=;i<G[x].size();i++)
dfs(G[x][i]),root[x]=merge(root[x],root[G[x][i]]);
while(Lt[root[x]].siz && Lt[root[x]].sum>m) pop(root[x]);
res=max(res,L[x]*Lt[root[x]].siz);
} int main()
{
n=read();m=read();
for(int i=;i<=n;i++)
{
int x=read();G[x].push_back(i);
C[i]=read();L[i]=read();
Lt[i].sum=Lt[i].val=C[i];Lt[i].siz=;
} dfs();
cout << res;
return ;
}

可并堆:

#include <bits/stdc++.h>

using namespace std;
typedef long long ll; inline int read()
{
char ch;int num,f=;
while(!isdigit(ch=getchar())) f|=(ch=='-');
num=ch-'';
while(isdigit(ch=getchar())) num=num*+ch-'';
return f?-num:num;
} const int MAXN=1e5+;
vector<int> G[MAXN]; int n,m,C[MAXN],L[MAXN],root[MAXN];
ll res=; struct SkewHeap
{
int v[MAXN],ls[MAXN],rs[MAXN];
ll siz[MAXN],sum[MAXN]; int merge(int x,int y)
{
if(!x || !y) return x+y;
if(v[x]<v[y]) swap(x,y);
rs[x]=merge(rs[x],y);
swap(ls[x],rs[x]); sum[x]=sum[ls[x]]+sum[rs[x]]+v[x];
siz[x]=siz[ls[x]]+siz[rs[x]]+;
return x;
} void pop(int &x){x=merge(ls[x],rs[x]);}
}Heap; void dfs(int x)
{
root[x]=x;
for(int i=;i<G[x].size();i++)
dfs(G[x][i]),root[x]=Heap.merge(root[x],root[G[x][i]]);
while(Heap.siz[root[x]] && Heap.sum[root[x]]>m) Heap.pop(root[x]);
res=max(res,L[x]*Heap.siz[root[x]]);
} int main()
{
n=read();m=read();
for(int i=;i<=n;i++)
{
int x=read();G[x].push_back(i);
C[i]=read();L[i]=read();
Heap.siz[i]=;Heap.sum[i]=Heap.v[i]=C[i];
} dfs();
cout << res;
return ;
}

Review:

1、对于每棵左偏树,最好用root[x]记录其根节点

2、对于左偏树要跟着维护的信息,

     在merge的最后进行更新

3、可选择将整个数据结构封装在一个类中,写起来可能方便点

[BZOJ 2809] Dispatching的更多相关文章

  1. BZOJ - 2809 dispatching 主席树+dfs序

    在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Master.除了 Master以外,每名忍者都有且仅有一个上级.为保密,同时增强忍者们的 ...

  2. 【BZOJ 2809 dispatching】

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4393  Solved: 2246[Submit][Status][Discuss] Descript ...

  3. BZOJ 2809: [Apio2012]dispatching( 平衡树 + 启发式合并 )

    枚举树上的每个结点做管理者, 贪心地取其子树中薪水较低的, 算出这个结点为管理者的满意度, 更新答案. 用平衡树+启发式合并, 时间复杂度为O(N log²N) ------------------- ...

  4. bzoj 2809: [Apio2012]dispatching -- 可并堆

    2809: [Apio2012]dispatching Time Limit: 10 Sec  Memory Limit: 128 MB Description 在一个忍者的帮派里,一些忍者们被选中派 ...

  5. 【BZOJ 2809】2809: [Apio2012]dispatching (左偏树)

    2809: [Apio2012]dispatching Description 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Maste ...

  6. AC日记——dispatching bzoj 2809

    2809: [Apio2012]dispatching Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3290  Solved: 1740[Submi ...

  7. BZOJ 2809 APIO2012 dispatching Treap+启示式合并 / 可并堆

    题目大意:给定一棵树,选定一棵子树中的一些点,薪水和不能超过m,求点的数量*子树根节点的领导能力的最大值 考虑对于每一个节点,我们维护一种数据结构,在当中贪心寻找薪金小的雇佣. 每一个节点暴力重建一定 ...

  8. BZOJ 2809: [Apio2012]dispatching(左偏树)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2809 题意: 思路:最简单的想法就是枚举管理者,在其子树中从薪水低的开始选起,但是每个节点都这样处理 ...

  9. BZOJ 2809 [Apio2012]dispatching(斜堆+树形DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2809 [题目大意] 给出一棵树,求出每个点有个权值,和一个乘算值,请选取一棵子树, 并 ...

随机推荐

  1. Ubuntu下使用mysqli-connect连接mysql时报错:ERROR 1698 (28000): Access denied for user 'root'@'localhost'

    LNMP安装好后,写了个index.php文件,里面的内容很简单,就是想测试php与mysql的通信是否正常,代码如下: <?php $host = 'localhost'; $user = ' ...

  2. [hdu 1067]bfs+hash

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1067 queue里面果然不能放vector,还是自己写的struct比较省内存…… #include& ...

  3. 初识 spl_autoload_register

    spl_autoload_register 一.首先我们看来自官网的定义 版本要求:php版本为5.1.2+ 说明:注册给定的函数作为__autoload的实现.即自动加载 函数参数说明: bool ...

  4. PhoneGap之自定义插件

    PhoneGap:作为原生App,Java(这里面是指Android的)与JavaScript 的通信桥梁,使得我们的混合开发更加得心应手,我是与Android结合的混合开发. 但在这里不得不吐槽一下 ...

  5. java JDK动态代理的机制

    一:前言 自己在稳固spring的一些特性的时候在网上看到了遮掩的一句话“利用接口的方式,spring aop将默认通过JDK的动态代理来实现代理类,不适用接口时spring aop将使用通过cgli ...

  6. [洛谷P2124] 奶牛美容

    洛谷题目链接:奶牛美容 题目描述 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 6 16 ................ ..XXXX....XXX... ...XXXX... ...

  7. HDU 1798 Tell me the area (数学)

    题目链接 Problem Description     There are two circles in the plane (shown in the below picture), there ...

  8. NYOJ 127 星际之门(一) (数学)

    题目链接 描述 公元3000年,子虚帝国统领着N个星系,原先它们是靠近光束飞船来进行旅行的,近来,X博士发明了星际之门,它利用虫洞技术,一条虫洞可以连通任意的两个星系,使人们不必再待待便可立刻到达目的 ...

  9. Jackson对多态和多子类序列化的处理配置

    目录 Jackson 多态类型的处理 Jackson Jackson可以轻松的将Java对象转换成json对象和xml文档,同样也可以将json.xml转换成Java对象. 多态类型的处理 jacks ...

  10. python收集

    http://my.oschina.net/mutour/blog/?disp=2&catalog=0&sort=time&p=4 Python 不使用win32api打开任务 ...