博客转载自:https://blog.csdn.net/mylinx/article/details/7007309

#pragma pack(n)

解释一:

每个特定平台上的编译器都有自己的默认“对齐系数”(也叫对齐模数)。程序员可以通过预编译命令#pragma pack(n),n=1,2,4,8,16来改变这一系数,其中的n就是你要指定的“对齐系数”。

规则:

1. 数据成员对齐规则:结构(struct)(或联合(union))的数据成员,第一个数据成员放在offset为0的地方,以后每个数据成员的对齐按照#pragma pack指定的数值和这个数据成员自身长度中,比较小的那个进行。

2. 结构(或联合)的整体对齐规则:在数据成员完成各自对齐之后,结构(或联合)本身也要进行对齐,对齐将按照#pragma pack指定的数值和结构(或联合)最大数据成员长度中,比较小的那个进行。

解释二:

n 字节的对齐方式 VC 对结构的存储的特殊处理确实提高 CPU 存储变量的速度,但是有时候也带来 了一些麻烦,我们也屏蔽掉变量默认的对齐方式,自己可以设定变量的对齐方式。 VC 中提供了#pragma pack(n)来设定变量以 n 字节对齐方式。n 字节对齐就是说 变量存放的起始地址的偏移量有两种情况:

第一、如果 n 大于等于该变量所占用的字 节数,那么偏移量必须满足默认的对齐方式。

第二、如果 n 小于该变量的类型所占用 的字节数,那么偏移量为 n 的倍数,不用满足默认的对齐方式。结构的总大小也有个 约束条件,分下面两种情况:如果 n 大于所有成员变量类型所占用的字节数,那么结 构的总大小必须为占用空间最大的变量占用的空间数的倍数; 否则必须为 n 的倍数。

举例说明#pragma pack(push)

#pragma pack(4)//设定为 4 字节对齐
struct test { char m1; double m4; int m3; };
#pragma pack(pop)//恢复对齐状态 以上结构体的大小为 16:

下面分析其存储情况,首先为 m1 分配空间,其偏移量 为 0,满足我们自己设定的对齐方式(4 字节对齐),m1 大小为 1 个字节。接着开始 为 m4 分配空间,这时其偏移量为 1,需要补足 3 个字节,这样使偏移量满足为 n=4 的倍数(因为 sizeof(double)大于 4),m4 占用 8 个字节。接着为 m3 分配空间,这时 其偏移量为 12,满足为 4 的倍数,m3 占用 4 个字节。这时已经为所有成员变量分配 了空间,共分配了 16 个字节,满足为 n 的倍数。如果把上面的#pragma pack(4)改为 #pragma pack(8),那么我们可以得到结构的大小为 24。

查看下列更多例子

#pragma pack(4)

struct node{

  int e;
char f;
short int a;
char b; };
struct node n;
printf("%d\n",sizeof(n));

自己计算结果是16,但是结果是12

然后结构体内部数据成员变动一下位置:

#pragma pack(4)
struct node{ char f;
int e;
short int a;
char b;}; struct node n;
printf("%d\n",sizeof(n));

计算结果依然是12

将对齐位数强制定位2

#pragma pack(2)
struct node{ char f;
int e;
short int a;
char b;}; struct node n;
printf("%d\n",sizeof(n));

计算结果依然是10

将对齐位数强制定位1

#pragma pack(1)
struct node{ char f;
int e;
short int a;
char b;}; struct node n;
printf("%d\n",sizeof(n));

计算结果是8

其实之所以有内存字节对齐机制,就是为了最大限度的减少内存读取次数。我们知道CPU读取速度比内存读取速度快至少一个数量级,所以为了节省运算花费时间,只能以牺牲空间来换取时间了。

下面举例说明如何最大限度的减少读取次数

#pragma pack(1)
struct node{ char f;
int e;
short int a;
char b;}; struct node n;
printf("%d\n",sizeof(n));

这里强制按照1字节进行对齐,可以理解成所有的内容都是按照1字节进行读取(暂且这样理解,因为这样可以很好的理解内存对其机制),其他所有的数据成员都是1字节的整数倍,所以也就不用进行内存对其,各个成员在内存中就按照实际顺序进行排列,结构体实际长度为8.

#pragma pack(2)
struct node{ char f;
int e;
short int a;
char b;}; struct node n;
printf("%d\n",sizeof(n));

这里强制按照2字节进行对齐。如果内存分布仍然是连续的话,那么int e就得三次才能读到CPU中,所以为了“讲究”int e的读取,所以在char f之后预留1BYTE,最后的char b也是如此,所以长度为10。

#pragma pack(4)
struct node{ char f;
int e;
short int a;
char b;};
struct node n;
printf("%d\n",sizeof(n));

这里强制按照4字节进行对齐。所以char f后要预留3BYTE,而short int a 和 char b可以一次读取到CPU(按照4字节读取),所以长度为12。

如果#pramga pack(n)中的n大于结构体成员中任何一个成员所占用的字节数,则该n值无效。编译器会选取结构体中最大数据成员的字节数为基准进行对其分配内存数量

#pragma pack (n)             作用:C编译器将按照n个字节对齐。
#pragma pack () 作用:取消自定义字节对齐方式。 #pragma pack (push,1) 作用:是指把原来对齐方式设置压栈,并设新的对齐方式设置为1个字节对齐
#pragma pack(pop) 作用:恢复对齐状态

因此可见,加入push和pop可以使对齐恢复到原来状态,而不是编译器默认,可以说后者更优,但是很多时候两者差别不大

#pragma pack(push) //保存当前对齐状态
#pragma pack(4)//设定为4字节对齐
相当于 #pragma pack (push,4)

举例子

#pragma pack(1)
struct sample
{
char a;
double b;
};
#pragma pack()

注:若不用#pragma pack(1)和#pragma pack()括起来,则sample按编译器默认方式对齐(成员中size最大的那个)。即按8字节(double)对齐,则sizeof(sample)==16.成员char a占了8个字节(其中7个是空字节);若用#pragma pack(1),则sample按1字节方式对齐sizeof(sample)==9.(无空字节),比较节省空间啦,有些场和还可使结构体更易于控制。

应用实例

在网络协议编程中,经常会处理不同协议的数据报文。一种方法是通过指针偏移的方法来得到各种信息,但这样做不仅编程复杂,而且一旦协议有变化,程序修改起来也比较麻烦。在了解了编译器对结构空间的分配原则之后,我们完全可以利用这一特性定义自己的协议结构,通过访问结构的成员来获取各种信息。这样做,不仅简化了编程,而且即使协议发生变化,我们也只需修改协议结构的定义即可,其它程序无需修改,省时省力。下面以TCP协议首部为例,说明如何定义协议结构。其协议结构定义如下:

#pragma pack(1) // 按照1字节方式进行对齐
struct TCPHEADER
{
short SrcPort; // 16位源端口号
short DstPort; // 16位目的端口号
int SerialNo; // 32位序列号
int AckNo; // 32位确认号
unsigned char HaderLen : 4; // 4位首部长度
unsigned char Reserved1 : 4; // 保留6位中的4位
unsigned char Reserved2 : 2; // 保留6位中的2位
unsigned char URG : 1;
unsigned char ACK : 1;
unsigned char PSH : 1;
unsigned char RST : 1;
unsigned char SYN : 1;
unsigned char FIN : 1;
short WindowSize; // 16位窗口大小
short TcpChkSum; // 16位TCP检验和
short UrgentPointer; // 16位紧急指针
};
#pragma pack()

#Pragma Pack与内存分配的更多相关文章

  1. C/C++中的内存对齐问题和pragma pack命令详解

    这个内存对齐问题,居然影响到了sizeof(struct)的结果值.突然想到了之前写的一个API库里,有个API是向后台服务程序发送socket请求.其中的socket数据包是一个结构体.在发送soc ...

  2. C++编译指令#pragma pack的配对使用

    #pragma pack可以用来指定C++数据结构的成员变量的内存对齐数值(可选值为1,2,4,8,16). 本文主要是强调在你的头文件中使用pack指令要配对使用,以避免意外影响项目中其他源文件的结 ...

  3. 【C/C++开发】C++编译指令#pragma pack的配对使用

    C++编译指令#pragma pack的配对使用 #pragma pack可以用来指定C++数据结构的成员变量的内存对齐数值(可选值为1,2,4,8,16). 本文主要是强调在你的头文件中使用pack ...

  4. #Pragma Pack(n)与内存分配

    #pragma pack(n) 解释一: 每个特定平台上的编译器都有自己的默认"对齐系数"(也叫对齐模数).程序员可以通过预编译命令#pragma pack(n),n=1,2,4, ...

  5. #pragma pack(push,1)与#pragma pack(1)的区别

    这是给编译器用的参数设置,有关结构体字节对齐方式设置, #pragma pack是指定数据在内存中的对齐方式. #pragma pack (n)             作用:C编译器将按照n个字节对 ...

  6. C语言字节对齐 __align(),__attribute((aligned (n))),#pragma pack(n)

    转载地址 : http://blog.csdn.net/21aspnet/article/details/6729724 一.概念    对齐跟数据在内存中的位置有关.如果一个变量的内存地址正好位于它 ...

  7. (转载)关于#pragma pack(push,1)和#pragma pack(1)

    转载http://www.rosoo.net/a/201203/15889.html 一.#pragma pack(push,1)与#pragma pack(1)的区别 这是给编译器用的参数设置,有关 ...

  8. pragma pack(非常有用的字节对齐用法说明)

    强调一点: #pragma pack(4) typedef struct { char buf[3]; word a; }kk; #pragma pack() 对齐的原则是min(sizeof(wor ...

  9. #pragma pack(n) 的作用

    在C语言中,结构是一种复合数据类型,其构成元素既可以是基本数据类型(如int.long.float等)的变量,也可以是一些复合数据类型(如数组.结构.联合等)的数据单元.在结构中,编译器为结构的每个成 ...

随机推荐

  1. Java [Leetcode 347]Top K Frequent Elements

    题目描述: Given a non-empty array of integers, return the k most frequent elements. For example,Given [1 ...

  2. 剑指Offer面试题:9.打印1到最大的n位数

    一 题目:打印1到最大的n位数 题目:输入数字n,按顺序打印从1到最大的n位十进制.比如输入3,则打印出1.2.3一直到最大的3位数即999. 二 不考虑大数解法 // 打印从1到最大的n位数 voi ...

  3. flask中cookie和session介绍

    flask中cookie和session介绍 一.cookie: 在网站中,http请求是无状态的.也就是说即使第一次和服务器连接后并且登录成功后,第二次请求服务器依然不能知道当前请求是哪个用户.co ...

  4. Vue.js 中的动态路由

    静态路由是不可以传递参数的.需要传递参数得用到动态路由 那么如何将参数作为路由呢? //在参数名前面加上 : ,然后将参数写在路由的 path 内 routes: [ //将页面组件与path指令的路 ...

  5. 使用妹子UI开发的体验分享

    前阵子看到一个类似bootstrap的前端UI框架,好奇心驱使下,去琢磨了一些,最终决定网站改版用这个UI试试效果: 首页+头部: 投稿页: 现成拷贝过来的评论列表: 总结: 上手难度: (熟悉boo ...

  6. 利用全局变量$_SESSION和register_shutdown_function自定义会话处理

    register_shutdown_function 可以注册一个自定义的函数,在程序运行结束之前 执行. 在做ecshop的二次开发过程中,虽然代码 太老太乱太冗余,但ec的会话处理的设计感觉还是不 ...

  7. 南阳OJ 61 传纸条(一)

    传纸条(一) 时间限制:2000 ms  |  内存限制:65535 KB 难度:5   描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行 ...

  8. java代码实现点击鼠标从控制台输出信息

    总结:最难的就是当我们需要点击按钮时去实现某个功能-----------因为那个我没有理解透,是涉及整个程序的 package com.a.b; import javax.swing.*; impor ...

  9. java排序。。简单的冒泡排序

    总结:一种简单的交换顺序,从数左边开始扫描待排序的元素,在扫描过程中依次对相邻元素进行比较,将较大值后移,每经过一轮排序后,值最大的元素将移到末尾, 此时记下该元素的位置,下一轮排序只需比较到此位置即 ...

  10. 整数a整数b

    namespace ConsoleApplication6{ class Program { static void Main(string[] args) { while (true) { Cons ...