题意

题目链接

给出一张有向图,以及起点终点,判断每条边的状态:

  1. 是否一定在最短路上,是的话输出'YES'

  2. 如果不在最短路上,最少减去多少权值会使其在最短路上,如果减去后的权值\(< 1\),输出'NO',否则输出'CAN + 花费'

Sol

考察对最短路的理解。

首先确定哪些边一定在最短路上,一个条件是 从起点到该点的最短路 + 边权 + 从该点到终点的最短路 = 从起点到终点的最短路

同时还要满足没有别的边可以代替这条边,可以用Tarjan求一下桥。当然也可以直接用最短路条数判

这样的话正反跑一边Dijkstra求出最短路以及最短路径的条数,判断一下即可

#include<bits/stdc++.h>
#define Pair pair<LL, int>
#define MP make_pair
#define fi first
#define se second
#define LL long long
using namespace std;
const int MAXN = 2e5 + 10;
const LL INF = 1e18 + 10;
const LL mod1 = 2860486313LL, mod2 = 1500450271LL;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M, S, T, vis[MAXN];
LL f[MAXN], g[MAXN], f2[MAXN], g2[MAXN];
LL dis[MAXN], rdis[MAXN];
vector<Pair> v[MAXN], t[MAXN];
struct Edge { int u, v; LL w;} E[MAXN];
LL add(LL x, LL y, LL mod) {
return (x + y >= mod ? x + y - mod : x + y);
}
void Dij(int S, LL *d, LL *f, LL *f2, int opt) {
priority_queue<Pair> q; q.push(MP(0, S));
for(int i = 1; i <= N; i++) d[i] = INF;
d[S] = 0; f[S] = f2[S] = 1; memset(vis, 0, sizeof(vis));
while(!q.empty()) {
if(vis[q.top().se]) {q.pop(); continue;}
int p = q.top().se; q.pop(); vis[p] = 1;
vector<Pair> *e = (opt == 1 ? v + p : t + p);
for(int i = 0; i < e -> size(); i++) {
int to = (*e)[i].fi, w = (*e)[i].se;
if(d[to] > d[p] + w) d[to] = d[p] + w, f[to] = f[p], f2[to] = f2[p], q.push(MP(-d[to], to));
else if(d[to] == d[p] + w) f[to] = add(f[to], f[p], mod1), f2[to] = add(f2[to], f2[p], mod2);
}
}
}
signed main() {
N = read(); M = read(); S = read(); T = read();
for(int i = 1; i <= M; i++) {
int x = read(), y = read(), z = read(); E[i] = (Edge) {x, y, z};
v[x].push_back(MP(y, z));
t[y].push_back(MP(x, z));
}
Dij(S, dis, f, f2, 1);
Dij(T, rdis, g, g2, 2);
for(int i = 1; i <= M; i++) {
int x = E[i].u, y = E[i].v;LL w = E[i].w;
if((dis[x] + w + rdis[y] == dis[T]) && (1ll * f[x] * g[y] % mod1 == f[T]) && (1ll * f2[x] * g2[y] % mod2 == f2[T])) puts("YES");
else {
LL ned = dis[T] - dis[x] - rdis[y] ;
if(ned <= 1) puts("NO");
else printf("CAN %I64d\n", w - ned + 1);
}
}
return 0;
}

cf567E. President and Roads(最短路计数)的更多相关文章

  1. CF567E President and Roads

    \(\color{#0066ff}{ 题目描述 }\) 给出一个有向图,从起点走到终点(必须走最短路),问一条边是否一定会被经过,如果不经过它,可以减小它的多少边权使得经过它(边权不能减少到0) \( ...

  2. Codeforces Round #Pi (Div. 2) E. President and Roads 最短路+桥

    题目链接: http://codeforces.com/contest/567/problem/E 题意: 给你一个带重边的图,求三类边: 在最短路构成的DAG图中,哪些边是必须经过的: 其他的(包括 ...

  3. Codeforces.567E.President and Roads(最短路 Dijkstra)

    题目链接 \(Description\) 给定一张有向图,求哪些边一定在最短路上.对于不一定在最短路上的边,输出最少需要将其边权改变多少,才能使其一定在最短路上(边权必须为正,若仍不行输出NO). \ ...

  4. Codeforces Round #Pi (Div. 2) E. President and Roads tarjan+最短路

    E. President and RoadsTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/567 ...

  5. 【SPFA】 最短路计数

    最短路计数 [问题描述]   给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. [输入格式]   输入第一行包含2个正整数N,M,为图的顶点数与边数. ...

  6. P1144 最短路计数

    P1144 最短路计数 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M,为图的顶 ...

  7. 洛谷P1144最短路计数题解

    最短路计数 此题还是寻找从1到i点总共有几个最短路且每条边的边长为1,对于这种寻找最短路的个数,我们可以反向搜索,即先用\(SPFA\)预处理出所有点的最短路,然后我们反向记忆化搜索,可以用\(sum ...

  8. 洛谷P1144 最短路计数(SPFA)

    To 洛谷.1144 最短路计数 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M ...

  9. 2018.11.05 NOIP模拟 规避(最短路计数)

    传送门 正难则反. 考虑计算两人相遇的方案数. 先正反跑一遍最短路计数. 然后对于一条在最短路上的边(u,v)(u,v)(u,v),如果(dis(s,u)*2<total&&di ...

随机推荐

  1. linux负载均衡与性能监控

    平均负载是单位时间内, 系统处于可运行状态和不可中断状态的平均进程数( 平均活跃进程数 ) 可运行状体好理解, 就是进程正在运行状态Running和可运行状态Runnable... 这里需要注意的是 ...

  2. 108th LeetCode Weekly Contest Minimum Falling Path Sum

    Given a square array of integers A, we want the minimum sum of a falling path through A. A falling p ...

  3. AES/CBC/PKCS5Padding对称加密

    package unit; import javax.crypto.Cipher; import javax.crypto.spec.IvParameterSpec; import javax.cry ...

  4. [转] PuTTY + Xming 远程使用 Linux GUI

    [From] http://www.zw1840.com/blog/zw1840/2008/10/putty-xming-linux-gui.html By zw1840 on October 28, ...

  5. linux下的常见信号总结

    在linux下有很多信号,按可靠性分为可靠信号和非可靠信号,按时间分为实时信号和非实时信号,linux进程也有三种方式来处理收到的信号: (1)忽略信号,即对信号不做任何处理,其中,有两个信号不能忽略 ...

  6. JDK安装以及maven部署

    JDK安装 检查原有JDK rpm -qa|grep jdk 假如原环境安装有JDK,卸载,命令举例: yum -y remove java--openjdk-headless-.b17.el7.x8 ...

  7. 千万不要犯这种愚蠢的错误:Property 'XXX' not found on type java.lang.String

    一定是: <c:forEach var="book" items="${booklist}"> 而不是: <c:forEach var=&qu ...

  8. vector与array之间转换,向量与数据之间转换

    一维数组: vector<int> a; int b[5] = {1,2,3,4,5}; a.push_back(b);   二维数组: b[5][6] = {1,2,3,4,5,6... ...

  9. spark第十八篇:Tuning Spark 调优

    由于大多数Spark应用都是在内存中计算的,所以,Spark程序的瓶颈可能是集群中的任何资源,比如CPU,网络带宽或者内存等.本指南主要涵盖两个主题: 1.数据序列化.这对于良好的网络性能至关重要,还 ...

  10. ButtonAddListener监听按钮点击事件

    ButtonAddListener监听按钮点击事件 using UnityEngine; using System.Collections; using UnityEngine.UI; using U ...