A. Minimum Difficulty
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Mike is trying rock climbing but he is awful at it.

There are n holds on the wall, i-th hold is at height ai off the ground. Besides, let the sequence ai increase, that is, ai < ai + 1 for all ifrom 1 to n - 1; we will call such sequence a track. Mike thinks that the track a1, ..., an has difficulty . In other words, difficulty equals the maximum distance between two holds that are adjacent in height.

Today Mike decided to cover the track with holds hanging on heights a1, ..., an. To make the problem harder, Mike decided to remove one hold, that is, remove one element of the sequence (for example, if we take the sequence (1, 2, 3, 4, 5) and remove the third element from it, we obtain the sequence (1, 2, 4, 5)). However, as Mike is awful at climbing, he wants the final difficulty (i.e. the maximum difference of heights between adjacent holds after removing the hold) to be as small as possible among all possible options of removing a hold. The first and last holds must stay at their positions.

Help Mike determine the minimum difficulty of the track after removing one hold.

Input

The first line contains a single integer n (3 ≤ n ≤ 100) — the number of holds.

The next line contains n space-separated integers ai (1 ≤ ai ≤ 1000), where ai is the height where the hold number i hangs. The sequence ai is increasing (i.e. each element except for the first one is strictly larger than the previous one).

Output

Print a single number — the minimum difficulty of the track after removing a single hold.

Examples
input
3
1 4 6
output
5
input
5
1 2 3 4 5
output
2
input
5
1 2 3 7 8
output
4
Note

In the first sample you can remove only the second hold, then the sequence looks like (1, 6), the maximum difference of the neighboring elements equals 5.

In the second test after removing every hold the difficulty equals 2.

In the third test you can obtain sequences (1, 3, 7, 8), (1, 2, 7, 8), (1, 2, 3, 8), for which the difficulty is 4, 5 and 5, respectively. Thus, after removing the second element we obtain the optimal answer — 4.

题意:依次只删掉2-(n-1) 的点,找到每次相邻的最大值,再找最大值里的最小值;

思路:暴力,直接贴代码;

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
#define eps 1e-14
const int N=2e5+,M=1e6+,inf=1e9+,mod=1e9+;
int a[N];
int main()
{
int n;
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
}
int ans=inf;
for(int i=;i<n;i++)
{
int maxx=;
for(int t=;t<=n;t++)
{
if(i==t)continue;
if(i+==t)
maxx=max(maxx,a[t]-a[t-]);
else
maxx=max(maxx,a[t]-a[t-]); }
ans=min(ans,maxx);
}
printf("%d\n",ans);
return ;
}
B. Secret Combination
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

You got a box with a combination lock. The lock has a display showing n digits. There are two buttons on the box, each button changes digits on the display. You have quickly discovered that the first button adds 1 to all the digits (all digits 9 become digits 0), and the second button shifts all the digits on the display one position to the right (the last digit becomes the first one). For example, if the display is currently showing number 579, then if we push the first button, the display will show 680, and if after that we push the second button, the display will show 068.

You know that the lock will open if the display is showing the smallest possible number that can be obtained by pushing the buttons in some order. The leading zeros are ignored while comparing numbers. Now your task is to find the desired number.

Input

The first line contains a single integer n (1 ≤ n ≤ 1000) — the number of digits on the display.

The second line contains n digits — the initial state of the display.

Output

Print a single line containing n digits — the desired state of the display containing the smallest possible number.

Examples
input
3
579
output
024
input
4
2014
output
0142

题意:你可以让每个数+1,再循环让每个数向后移一位,求最小;

思路:暴力,n*n*10;

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
#define eps 1e-14
const int N=2e5+,M=1e6+,inf=1e9+,mod=1e9+;
char a[N];
string s[N];
int main()
{
int n;
scanf("%d",&n);
scanf("%s",a);
for(int i=;i<n;i++)
a[i+n]=a[i];
a[*n]=;
string minn="";
for(int i=;i<n;i++)
{
s[i].clear();
for(int t=i;t<i+n;t++)
s[i]+=a[t];
if(minn=="")
minn=s[i];
else if(minn>s[i])
minn=s[i];
for(int t=;t<=;t++)
{
for(int j=;j<n;j++)
{
s[i][j]+=;
if(s[i][j]>'')
s[i][j]-=;
}
if(minn>s[i])
minn=s[i];
}
}
cout<<minn<<endl;
return ;
}
C. Removing Columns
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

You are given an n × m rectangular table consisting of lower case English letters. In one operation you can completely remove one column from the table. The remaining parts are combined forming a new table. For example, after removing the second column from the table

abcd
edfg
hijk

we obtain the table:

acd
efg
hjk

A table is called good if its rows are ordered from top to bottom lexicographically, i.e. each row is lexicographically no larger than the following one. Determine the minimum number of operations of removing a column needed to make a given table good.

Input

The first line contains two integers  — n and m (1 ≤ n, m ≤ 100).

Next n lines contain m small English letters each — the characters of the table.

Output

Print a single number — the minimum number of columns that you need to remove in order to make the table good.

Examples
input
1 10
codeforces
output
0
input
4 4
case
care
test
code
output
2
input
5 4
code
forc
esco
defo
rces
output
4
Note

In the first sample the table is already good.

In the second sample you may remove the first and third column.

In the third sample you have to remove all the columns (note that the table where all rows are empty is considered good by definition).

Let strings s and t have equal length. Then, s is lexicographically larger than t if they are not equal and the character following the largest common prefix of s and t (the prefix may be empty) in s is alphabetically larger than the corresponding character of t.

题意:n个单词,每次可以删除一列,使得n个单词字典序;

思路:暴力;

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
#define eps 1e-14
const int N=1e2+,M=1e6+,inf=1e9+,mod=1e9+;
int n,m;
int flag[N];
string a[N];
int check(int x)
{
string st[N];
for(int i=;i<n;i++)
{
st[i].clear();
for(int t=;t<=x;t++)
if(!flag[t])
st[i]+=a[i][t];
if(i)
{
if(st[i]<st[i-])
return ;
}
}
return ;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<n;i++)
cin>>a[i];
int ans=;
for(int i=;i<m;i++)
{
if(check(i)==)
{
flag[i]=;
ans++;
}
}
printf("%d\n",ans);
return ;
}

Codeforces Round #283 (Div. 2) A ,B ,C 暴力,暴力,暴力的更多相关文章

  1. 暴力+构造 Codeforces Round #283 (Div. 2) C. Removing Columns

    题目传送门 /* 题意:删除若干行,使得n行字符串成递增排序 暴力+构造:从前往后枚举列,当之前的顺序已经正确时,之后就不用考虑了,这样删列最小 */ /*********************** ...

  2. 构造+暴力 Codeforces Round #283 (Div. 2) B. Secret Combination

    题目传送门 /* 构造+暴力:按照题目意思,只要10次加1就变回原来的数字,暴力枚举所有数字,string大法好! */ /************************************** ...

  3. Codeforces Round #283 (Div. 2) C. Removing Columns 暴力

    C. Removing Columns time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  4. Codeforces Round #283 Div.2 D Tennis Game --二分

    题意: 两个人比赛,给出比赛序列,如果为1,说明这场1赢,为2则2赢,假如谁先赢 t 盘谁就胜这一轮,谁先赢 s 轮则赢得整个比赛.求有多少种 t 和 s 的分配方案并输出t,s. 解法: 因为要知道 ...

  5. Codeforces Round #283 (Div. 2)

    A:暴力弄就好,怎么方便怎么来. B:我们知道最多加10次, 然后每次加1后我们求能移动的最小值,大概O(N)的效率. #include<bits/stdc++.h> using name ...

  6. codeforces 497c//Distributing Parts// Codeforces Round #283(Div. 1)

    题意:有n个区间[ai,bi],然后有n个人落在[ci,di],每个人能用ki次.问一种方式站满n个区间. 两种区间都用先x后y的升序排序.对于当前的区间[ai,bi],将ci值小于当前ai的全部放入 ...

  7. codeforces 497b// Tennis Game// Codeforces Round #283(Div. 1)

    题意:网球有一方赢t球算一场,先赢s场的获胜.数列arr(长度为n)记录了每场的胜利者,问可能的t和s. 首先,合法的场景必须: 1两方赢的场数不一样多. 2赢多的一方最后一场必须赢. 3最后一场必须 ...

  8. Codeforces Round #283 (Div. 2) B. Secret Combination 暴力水题

    B. Secret Combination time limit per test 2 seconds memory limit per test 256 megabytes input standa ...

  9. Codeforces Round #283 (Div. 2) A. Minimum Difficulty 暴力水题

    A. Minimum Difficulty time limit per test 2 seconds memory limit per test 256 megabytes input standa ...

随机推荐

  1. Java前端Rsa公钥加密,后端Rsa私钥解密(支持字符和中文)

    Base64工具类,可以让rsa编码的乱码变成一串字符序列 package com.utils; import java.io.ByteArrayInputStream; import java.io ...

  2. 程序如何在RAM ROM运行,内存分配与分区

    关于RAM ROM RAM与ROM就是具体的存储空间,统称为存储器 RAM(random access memory):运行内存,CPU可以直接访问,读写速度非常快,但是不能掉电存储.它又分为: 动态 ...

  3. Qt 如何像 VS 一样创建项目模版?

    qt 存储模版路径位置:Qt\Qt5.9.5\Tools\QtCreator\share\qtcreator\templates\wizards 在里面随意复制一个模版,修改三项即可在 qt 中显示该 ...

  4. Linux下安装MongoDB全程记录

    1.下载安装包 wget https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-amazon-3.6.0.tgz 2.解压缩 [root@loca ...

  5. mysql用户授权以及权限收回

    语法 GRANT privileges [(columns)] ON DATABASE.TABLE TO 'username'@'hostname' [IDENTIFIED BY [PASSWORD] ...

  6. 我的Android进阶之旅------>Android 众多的布局属性详解

    Android功能强大,界面华丽,但是众多的布局属性就害苦了开发者,下面这篇文章结合了网上不少资料,希望对读者有用. 第一类:属性值为true或false android:layout_centerH ...

  7. R语言中abline和lines的区别

    函数lines()其作用是在已有图上加线,命令为lines(x,y),其功能相当于plot(x,y,type="1")函数abline()可以在图上加直线,其使用方法有四种格式.( ...

  8. Objective-C 继承和多态

    学习Java我们知道类有三大特征,封装,继承,多态.而在Objective-C中也有继承的概念,今天就来看看Objective-C中的继承和多态. 首先,我们来看看示例代码: //Animal.h # ...

  9. 在英文Windows操作系统上使用SQL Server Management Studio(SSMS)导入Excel 97-2003文件时报错:Failure creating file

    今天在公司服务器上使用SQL Server Management Studio(SSMS)导入Excel 97-2003文件(.xls)时报错: Failure creating file. (Mic ...

  10. Js onload 解析

    Js onload的使用方法. 1.在script中调用 window.onload = function(){ function1(); function2(); function3(); }; 或 ...