Prim求MST最小生成树
最小生成树即在一个图中用最小权值的边将所有点连接起来。prim算法求MST其实它的主要思路和dijkstra的松弛操作十分相似
prim算法思想:
在图中随便找一个点开始这里我们假定起点为“1”,以点1为松弛点将与之相连接的点进行松弛操作并更新它们的dis值因为我们只需要连接它们的最短边因此我们只需要
"dis[ i ]=edges[pos][ i ]"(记录松弛点到与之相连的节点的边权) 接下来的操作和dijkstra一样我们进行贪心找到距松弛点最近的点并记录下它的坐标,而且使之成为下一个松弛点
然后我们循环n遍(一共n个节点) 最后它们的dis值就为构成一棵树的最短边。
图解:

由上面的贪心过程可以得到prim的工作原理就是将所有点作为松弛点对每个点的最短连接边进行松弛因此这些边可以构成一棵最小的树
代码:
for(int k=;k<=n;k++)
{
insert minn=INF,pos;
for(int i=;i<=n;i++)
{
if(!vis[i]&&dis[i]<minn)//寻找松弛点
{
pos=i;
minn=dis[i];
}
}
}
贪心代码:
for(int i=;i<=n;i++)
{
if(!vis[i]&&dis[i]>edges[pos][i])//prim核心代码
dis[i]=edges[pos][i];//贪心将每个点更新与之相连的最小的值
}
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdio>
#include <iomanip>
using namespace std;
typedef int insert;
#define in cin
const int INF=0x3f3f3f3f;
const int N=+;
insert edges[N][N],dis[N],vis[N];
insert n,m,x,y,z;
long long sum;
void value()
{
memset(edges,INF,sizeof(edges));
memset(dis,INF,sizeof(dis));
for(int i=;i<=m;i++)
{
in>>x>>y>>z;
if(edges[x][y]>z||edges[y][x]>z)
{
edges[x][y]=z;
edges[y][x]=z;
}
}
dis[]=;
return;
}
void prim()
{
for(int k=;k<=n;k++)
{
insert minn=INF,pos;
for(int i=;i<=n;i++)
{
if(!vis[i]&&dis[i]<minn)
{
pos=i;
minn=dis[i];
}
}
vis[pos]=true;
for(int i=;i<=n;i++)
{
if(!vis[i]&&dis[i]>edges[pos][i])
dis[i]=edges[pos][i];
}
}
return;
}
int main()
{
in>>n>>m;
value();
prim();
for(int i=;i<=n;i++)
sum+=dis[i];
cout<<"最小生成树的总权值"<<endl;
cout<<sum<<endl;
cout<<"每个点的最短边"<<endl;
for(int i=;i<=n;i++)
cout<<dis[i]<<" ";
return ;
}
但是如果用邻接矩阵存图既浪费空间又存不了大图所以便有了以下vector邻接表版本
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iomanip>
#include <vector>
#include <stack>
using namespace std;
typedef int insert;
#define in cin
#define out cout
const int INF=0x3f3f3f3f;
const int N=2e5+;
insert n,m,x,y,z,dis[N],sum,startpoint;
bool vis[N];
struct Node
{
insert to,w;
};
vector<struct Node> vt[N];
void inital_value()
{
memset(dis,INF,sizeof(dis));
for(int i=;i<=m;i++)
{
cin>>x>>y>>z;
struct Node now;
now.to=y;now.w=z;
vt[x].push_back(now);
now.to=x;
vt[y].push_back(now);
}
dis[startpoint]=;
return;
} void prim()
{
for(int k=;k<=n;k++)
{
insert minn=INF,pos;
for(int i=;i<=n;i++)
{
if(!vis[i]&&dis[i]<minn)
{
minn=dis[i];
pos=i;
}
}
vis[pos]=true;
for(int i=;i<vt[pos].size();i++)
{
if(!vis[vt[pos][i].to]&&dis[vt[pos][i].to]>vt[pos][i].w)
dis[vt[pos][i].to]=vt[pos][i].w;
}
}
return;
}
int main()
{
in>>n>>m>>startpoint;
inital_value();
prim();
for(int i=;i<=n;i++)
sum+=dis[i];
for(int i=;i<=n;i++)
cout<<startpoint<<"-->"<<i<<" "<<dis[i]<<endl;
cout<<"最小生成树的总边权:"<<endl;
cout<<sum<<endl;
return ;
}
Prim求MST最小生成树的更多相关文章
- prim求MST
PRIM==>>MST模板 #include <iostream> using namespace std; #define typec int #define V 3 con ...
- Borůvka (Sollin) 算法求 MST 最小生成树
基本思路: 用定点数组记录每个子树的最近邻居. 对于每一条边进行处理: 如果这条边连成的两个顶点同属于一个集合,则不处理,否则检测这条边连接的两个子树,如果是连接这两个子树的最小边,则更新 (合并). ...
- MST最小生成树及Prim普鲁姆算法
MST在前面学习了Kruskal算法,还有一种算法叫做Prim的.这两者的区别是Prim算法适合稠密图,比如说鸟巢这种几乎所有点都有相连的图.其时间复杂度为O(n^2),其时间复杂度与边的数目无关:而 ...
- MST最小生成树
首先,贴上一个很好的讲解贴: http://www.wutianqi.com/?p=3012 HDOJ 1233 还是畅通工程 http://acm.hdu.edu.cn/showproblem.ph ...
- UVA 1151 Buy or Build (MST最小生成树,kruscal,变形)
题意: 要使n个点之间能够互通,要使两点直接互通需要耗费它们之间的欧几里得距离的平方大小的花费,这说明每两个点都可以使其互通.接着有q个套餐可以选,一旦选了这些套餐,他们所包含的点自动就连起来了,所需 ...
- POJ 1789:Truck History(prim&&最小生成树)
id=1789">Truck History Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 17610 ...
- [BZOJ1937][SHOI2004]Mst最小生成树(KM算法,最大费用流)
1937: [Shoi2004]Mst 最小生成树 Time Limit: 3 Sec Memory Limit: 64 MBSubmit: 802 Solved: 344[Submit][Sta ...
- 【BZOJ2238】Mst 最小生成树+LCA+堆
[BZOJ2238]Mst Description 给出一个N个点M条边的无向带权图,以及Q个询问,每次询问在图中删掉一条边后图的最小生成树.(各询问间独立,每次询问不对之后的询问产生影响,即被删掉的 ...
- 【BZOJ1937】[Shoi2004]Mst 最小生成树 KM算法(线性规划)
[BZOJ1937][Shoi2004]Mst 最小生成树 Description Input 第一行为N.M,其中 表示顶点的数目, 表示边的数目.顶点的编号为1.2.3.…….N-1.N.接下来的 ...
随机推荐
- Spring知识点总结(四)之SpringAOP基础
1. Spring aop中的基本概念 • 连接点(Joinpoint):在程序执行过程中某个特定的点,比如某方法调用的时候或者处理异常的时候.在Spring AOP中,一个连接 ...
- WebGL学习笔记(2)
根据上一篇学习笔记,理解WebGL的工作原理及基本调用代码后,可以开始研究3D顶点对象的缩放.旋转.以及对对象进行可交互(鼠标或键盘控制)的旋转或者缩放. 要理解对象的旋转/缩放需要首先学习矩阵的计算 ...
- Linux进程间通信---管道和有名管道
一.管道 管道:管道是一种半双工的通信方式,数据只能单方向流动,而且只能在具有亲缘关系的进程间使用,因为管道 传递数据的单向性,管道又称为半双工管道.进程的亲缘关系通常是指父子进程关系. 管道的特点决 ...
- 【路由和交换之H3C自导自演】
H3C配置自导自演 显示和维护及恢复 1:display display history-command :查看历史命令记录 display diagnostic-information :查看 ...
- 利用html2canvas将当前网页保存为图片.
先分析下这个技术可实现的方式,以及优缺点吧! 前端实现 缺点是:兼容性查,需要高级浏览器支持,因为需要支持 canvas 绘图,还有就是会操作 html5 canvas api.(如果不会使用canv ...
- JavaSE 第二次学习随笔(二)
循环结构中的多层嵌套跳出 targeta: for(int i = 0; i < 100; i++){ for (int j = 0; j < 100; j++) { if(i + j = ...
- 解决pycharm报错:AttributeError: module 'pip' has no attribute 'main'
找到pycharm安装目录下 helpers/packaging_tool.py文件,找到如下代码: def do_install(pkgs): try: import pip except Impo ...
- zabbix监控MySQL服务状态
Mysql模板使用 在zabbix_agent配置文件中加入监控配置 vim etc/zabbix_agentd.conf ... UserParameter=mysql.version,mysqla ...
- (数据科学学习手札25)sklearn中的特征选择相关功能
一.简介 在现实的机器学习任务中,自变量往往数量众多,且类型可能由连续型(continuou)和离散型(discrete)混杂组成,因此出于节约计算成本.精简模型.增强模型的泛化性能等角度考虑,我们常 ...
- 贪心算法之Kruskal
克鲁斯卡尔Kruskal算法同Prim算法一样,都是求最小生成树.Kruskal是不断的找最短边,加入集合,且不构成回路. 所以,我们可以给每个点定义一个集合,一边的起点和终点查看是否属于同一集合,如 ...