Top K 算法详解
http://xingyunbaijunwei.blog.163.com/blog/static/7653806720111149318357/
问题描述
百度面试题:
搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。
假设目前有一千万个记录(这些查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,也就是越热门。),请你统计最热门的10个查询串,要求使用的内存不能超过1G。
必备知识:
什么是哈希表?
哈希表(Hash table,也叫散列表),是根据关键码值(Key value)而直接进行访问的数据结构。也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度。这个映射函数叫做散列函数,存放记录的数组叫做散列表。
哈希表的做法其实很简单,就是把Key通过一个固定的算法函数既所谓的哈希函数转换成一个整型数字,然后就将该数字对数组长度进行取余,取余结果就当作数组的下标,将value存储在以该数字为下标的数组空间里。
而当使用哈希表进行查询的时候,就是再次使用哈希函数将key转换为对应的数组下标,并定位到该空间获取value,如此一来,就可以充分利用到数组的定位性能进行数据定位(文章第二、三部分,会针对Hash表详细阐述)。
问题解析:
要统计最热门查询,首先就是要统计每个Query出现的次数,然后根据统计结果,找出Top 10。所以我们可以基于这个思路分两步来设计该算法。
即,此问题的解决分为以下俩个步骤:
第一步:Query统计
Query统计有以下俩个方法,可供选择:
1、直接排序法
首先我们最先想到的的算法就是排序了,首先对这个日志里面的所有Query都进行排序,然后再遍历排好序的Query,统计每个Query出现的次数了。
但是题目中有明确要求,那就是内存不能超过1G,一千万条记录,每条记录是255Byte,很显然要占据2.375G内存,这个条件就不满足要求了。
让我们回忆一下数据结构课程上的内容,当数据量比较大而且内存无法装下的时候,我们可以采用外排序的方法来进行排序,这里我们可以采用归并排序,因为归并排序有一个比较好的时间复杂度O(NlgN)。
排完序之后我们再对已经有序的Query文件进行遍历,统计每个Query出现的次数,再次写入文件中。
综合分析一下,排序的时间复杂度是O(NlgN),而遍历的时间复杂度是O(N),因此该算法的总体时间复杂度就是O(N+NlgN)=O(NlgN)。
2、Hash Table法
在第1个方法中,我们采用了排序的办法来统计每个Query出现的次数,时间复杂度是NlgN,那么能不能有更好的方法来存储,而时间复杂度更低呢?
题目中说明了,虽然有一千万个Query,但是由于重复度比较高,因此事实上只有300万的Query,每个Query255Byte,因此我们可以考虑把他们都放进内存中去,而现在只是需要一个合适的数据结构,在这里,Hash Table绝对是我们优先的选择,因为Hash Table的查询速度非常的快,几乎是O(1)的时间复杂度。
那么,我们的算法就有了:维护一个Key为Query字串,Value为该Query出现次数的HashTable,每次读取一个Query,如果该字串不在Table中,那么加入该字串,并且将Value值设为1;如果该字串在Table中,那么将该字串的计数加一即可。最终我们在O(N)的时间复杂度内完成了对该海量数据的处理。
本方法相比算法1:在时间复杂度上提高了一个数量级,为O(N),但不仅仅是时间复杂度上的优化,该方法只需要IO数据文件一次,而算法1的IO次数较多的,因此该算法2比算法1在工程上有更好的可操作性。
第二步:找出Top 10
算法一:普通排序
我想对于排序算法大家都已经不陌生了,这里不在赘述,我们要注意的是排序算法的时间复杂度是NlgN,在本题目中,三百万条记录,用1G内存是可以存下的。
算法二:部分排序
题目要求是求出Top 10,因此我们没有必要对所有的Query都进行排序,我们只需要维护一个10个大小的数组,初始化放入10个Query,按照每个Query的统计次数由大到小排序,然后遍历这300万条记录,每读一条记录就和数组最后一个Query对比,如果小于这个Query,那么继续遍历,否则,将数组中最后一条数据淘汰,加入当前的Query。最后当所有的数据都遍历完毕之后,那么这个数组中的10个Query便是我们要找的Top10了。
不难分析出,这样,算法的最坏时间复杂度是N*K, 其中K是指top多少。
算法三:堆
在算法二中,我们已经将时间复杂度由NlogN优化到NK,不得不说这是一个比较大的改进了,可是有没有更好的办法呢?
分析一下,在算法二中,每次比较完成之后,需要的操作复杂度都是K,因为要把元素插入到一个线性表之中,而且采用的是顺序比较。这里我们注意一下,该数组是有序的,一次我们每次查找的时候可以采用二分的方法查找,这样操作的复杂度就降到了logK,可是,随之而来的问题就是数据移动,因为移动数据次数增多了。不过,这个算法还是比算法二有了改进。
基于以上的分析,我们想想,有没有一种既能快速查找,又能快速移动元素的数据结构呢?回答是肯定的,那就是堆。
借助堆结构,我们可以在log量级的时间内查找和调整/移动。因此到这里,我们的算法可以改进为这样,维护一个K(该题目中是10)大小的小根堆,然后遍历300万的Query,分别和根元素进行对比。
思想与上述算法二一致,只是算法在算法三,我们采用了最小堆这种数据结构代替数组,把查找目标元素的时间复杂度有O(K)降到了O(logK)。
那么这样,采用堆数据结构,算法三,最终的时间复杂度就降到了N‘logK,和算法二相比,又有了比较大的改进。
总结:
至此,算法就完全结束了,经过上述第一步、先用Hash表统计每个Query出现的次数,O(N);然后第二步、采用堆数据结构找出Top 10,N*O(logK)。所以,我们最终的时间复杂度是:O(N) + N'*O(logK)。(N为1000万,N’为300万)。如果各位有什么更好的算法,欢迎留言评论。第一部分,完。
作者:July、wuliming、pkuoliver
出处:http://blog.csdn.net/v_JULY_v。
Top K 算法详解的更多相关文章
- BM算法 Boyer-Moore高质量实现代码详解与算法详解
Boyer-Moore高质量实现代码详解与算法详解 鉴于我见到对算法本身分析非常透彻的文章以及实现的非常精巧的文章,所以就转载了,本文的贡献在于将两者结合起来,方便大家了解代码实现! 算法详解转自:h ...
- kmp算法详解
转自:http://blog.csdn.net/ddupd/article/details/19899263 KMP算法详解 KMP算法简介: KMP算法是一种高效的字符串匹配算法,关于字符串匹配最简 ...
- 机器学习经典算法详解及Python实现--基于SMO的SVM分类器
原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector ...
- 【转】AC算法详解
原文转自:http://blog.csdn.net/joylnwang/article/details/6793192 AC算法是Alfred V.Aho(<编译原理>(龙书)的作者),和 ...
- 安全体系(二)——RSA算法详解
本文主要讲述RSA算法使用的基本数学知识.秘钥的计算过程以及加密和解密的过程. 安全体系(零)—— 加解密算法.消息摘要.消息认证技术.数字签名与公钥证书 安全体系(一)—— DES算法详解 1.概述 ...
- 安全体系(三)——SHA1算法详解
本文主要讲述使用SHA1算法计算信息摘要的过程. 安全体系(零)—— 加解密算法.消息摘要.消息认证技术.数字签名与公钥证书 安全体系(一)—— DES算法详解 安全体系(二)——RSA算法详解 为保 ...
- 【最短路径Floyd算法详解推导过程】看完这篇,你还能不懂Floyd算法?还不会?
简介 Floyd-Warshall算法(Floyd-Warshall algorithm),是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,与Dijkstra算法类似.该算法名称以 ...
- 八大排序算法详解(动图演示 思路分析 实例代码java 复杂度分析 适用场景)
一.分类 1.内部排序和外部排序 内部排序:待排序记录存放在计算机随机存储器中(说简单点,就是内存)进行的排序过程. 外部排序:待排序记录的数量很大,以致于内存不能一次容纳全部记录,所以在排序过程中需 ...
- 第三十一节,目标检测算法之 Faster R-CNN算法详解
Ren, Shaoqing, et al. “Faster R-CNN: Towards real-time object detection with region proposal network ...
随机推荐
- CodePush自定义更新弹框及下载进度条
CodePush 热更新之自定义更新弹框及下载进度 先来几张弹框效果图 非强制更新场景 image 强制更新场景 image 更新包下载进度效果 image 核心代码 这里的热更新Modal框,是封装 ...
- Angularjs基础(三)
AngularJS ng-model 指令 ng-model 指令用于绑定应用程序数据到HTML 控制器(input,select,textarea)的值ng-model指令 ng-model指令可以 ...
- Integer大小比较问题
public static void main(String[] args) throws NoSuchFieldException, IllegalAccessException { Integer ...
- 【TOJ 3305】Hero In Maze II
描述 500年前,Jesse是我国最卓越的剑客.他英俊潇洒,而且机智过人^_^.突然有一天,Jesse心爱的公主被魔王困在了一个巨大的迷宫中.Jesse听说这个消息已经是两天以后了,他急忙赶到迷宫,开 ...
- checked="checked"无效,radio未选中问题排查
在使用attr给元素设置属性的时候,但是显示在页面就是未选中,而且是只使用一两次是ok的,但是连着多使用就不起作用了,百度了下,发现遇到这个问题的人还蛮多的, 有人说,发现在jQuery1.6版本之后 ...
- Python学习之property
Python中使用Property函数可以将类中的函数当作属性来调用. 案例 __metaclass__=type class Rectangle: def __init__(self): self. ...
- 【GUI】一、Swing外观框架BeautyEye使用
一.Swing外观框架BeautyEye使用 1.1 导包 BeautyEye.jar 1.2 使用BeautyEye L&F public static void main(String[] ...
- IO复用——epoll系列系统调用
1.内核事件表 epoll是Linux特有的I/O复用函数.epoll把用户关心的文件描述上的事件放在内核里的一个事件表中,并用一个额外的文件描述符来标识该内核事件表.这个额外文件描述符使用函数epo ...
- 关于VSCode如何缩进两个空格
使用VSCode编写vue的时候,由于缩进问题经常报错.(默认缩进4个空格,实际规范上是两个空格) 更改VSCode的缩进格式. 但是此时你在编写代码的时候却发现任然缩进4格,此时因为vscode默认 ...
- (数据科学学习手札30)朴素贝叶斯分类器的原理详解&Python与R实现
一.简介 要介绍朴素贝叶斯(naive bayes)分类器,就不得不先介绍贝叶斯决策论的相关理论: 贝叶斯决策论(bayesian decision theory)是概率框架下实施决策的基本方法.对分 ...