历史性的时刻!!!

推了一晚上!和hyc一起萌萌哒地推出来了!!

被摧残蹂躏的智商啊!!!

然而炒鸡高兴!!

(请不要介意蒟蒻的内心独白。。)

设a[i]为扫到第i行时的方案数。

易知,对于一行1*4的格子,只有一种方案把它铺满。

首先,对于当前的第i行,如果它不和第i-1行有联系(也就是它是独立的一行),那么就有1*a[i-1]=a[i-1]种方案。

如果第i行和第i-1行有联系(2行间互相联系),那么共有一下四种方案:

如果第i行、第i-1行、第i-2行都有联系(3行间两两联系),那么共有两种方案(此图以及的轴对称图形):

如果第i行、第i-1行、第i-2行、第i-3行都有联系(4行间两两联系),那么共有三种方案(上面两种方案加下面一种):

……

一直递推下去,我们可以发现:

2行间相互联系 --> 4种方案

3行间相互联系 --> 2种方案

4行间相互联系 --> 3种方案

……

奇数行相互联系(n>2) --> 2种方案

偶数行相互联系(n>2) --> 3种方案

所以,我们可以得出:

a[i]=a[i-1]+4*a[i-2]+2*(a[i-3]+a[i-5]+……+a[(i&1)?0:1])+3*(a[i-4]+a[i-6]+……+a[(i&1)?1:0]);

设s=a[i-3]+a[i-5]+……+a[(i&1)?0:1],t=a[i-4]+a[i-6]+……+a[(i&1)?1:0];

该递推式可以转化为矩阵乘法:

代码如下:

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
using namespace std; const int N=;
int Mod;
struct node{
int s[][];
int sx,sy;
}; node mult(node a,node b)
{
node t;
t.sx=a.sx;t.sy=b.sy;
memset(t.s,,sizeof(t.s));
for(int i=;i<=a.sx;i++)
for(int j=;j<=b.sy;j++)
for(int k=;k<=a.sx;k++)
{
t.s[i][j]+=(a.s[i][k]*b.s[k][j])%Mod;
t.s[i][j]%=Mod;
}
return t;
} void quickpow(int n)
{
if(n==) {printf("0\n");return ;}
node a;
a.s[][]=%Mod,a.s[][]=%Mod,a.s[][]=%Mod,a.s[][]=%Mod;
a.s[][]=%Mod,a.s[][]=%Mod,a.s[][]=%Mod,a.s[][]=%Mod;
a.s[][]=%Mod,a.s[][]=%Mod,a.s[][]=%Mod,a.s[][]=%Mod;
a.s[][]=%Mod,a.s[][]=%Mod,a.s[][]=%Mod,a.s[][]=%Mod;
a.sx=;a.sy=;
node b;
b.s[][]=b.s[][]=b.s[][]=b.s[][]=%Mod;
b.s[][]=b.s[][]=b.s[][]=%Mod;
b.s[][]=b.s[][]=b.s[][]=%Mod;
b.s[][]=b.s[][]=b.s[][]=%Mod;
b.s[][]=b.s[][]=b.s[][]=%Mod;
b.sx=;b.sy=;
while(n)
{
if(n&) b = mult(a,b);
a = mult(a,a);
n>>=;
}
node c;
c.sx=;c.sy=;
c.s[][]=%Mod;c.s[][]=c.s[][]=c.s[][]=%Mod;
c = mult(b,c);
printf("%d\n",c.s[][]);
return ;
} int main()
{
while()
{
int x;
scanf("%d%d",&x,&Mod);
if(x==) return ;
quickpow(x);
}
return ;
}

【poj3420】递推式转矩阵乘法的更多相关文章

  1. HDU 1757 A Simple Math Problem 【矩阵经典7 构造矩阵递推式】

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=1757 A Simple Math Problem Time Limit: 3000/1000 MS (J ...

  2. P1067Warcraft III 守望者的烦恼(十大矩阵问题之七求递推式)

    https://vijos.org/p/1067 守望者-warden,长期在暗夜精灵的的首都艾萨琳内担任视察监狱的任务,监狱是成长条行的,守望者warden拥有一个技能名叫“闪烁”,这个技能可以把她 ...

  3. HDU-6185-Covering(推递推式+矩阵快速幂)

    Covering Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  4. 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式

    矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b     *     A B   =   a*A+b*C  a*c+b*D c d     ...

  5. [题解][SHOI2013]超级跳马 动态规划/递推式/矩阵快速幂优化

    这道题... 让我见识了纪中的强大 这道题是来纪中第二天(7.2)做的,这么晚写题解是因为 我去学矩阵乘法啦啦啦啦啦对矩阵乘法一窍不通的童鞋戳链接啦 层层递推会TLE,正解矩阵快速幂 首先题意就是给你 ...

  6. hdu 1757 A Simple Math Problem (构造矩阵解决递推式问题)

    题意:有一个递推式f(x) 当 x < 10    f(x) = x.当 x >= 10  f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + ...

  7. HDU - 2604 Queuing(递推式+矩阵快速幂)

    Queuing Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  8. HDU5950 Recursive sequence 非线性递推式 矩阵快速幂

    题目传送门 题目描述:给出一个数列的第一项和第二项,计算第n项. 递推式是 f(n)=f(n-1)+2*f(n-2)+n^4. 由于n很大,所以肯定是矩阵快速幂的题目,但是矩阵快速幂只能解决线性的问题 ...

  9. POJ 3734 Blocks(矩阵快速幂+矩阵递推式)

    题意:个n个方块涂色, 只能涂红黄蓝绿四种颜色,求最终红色和绿色都为偶数的方案数. 该题我们可以想到一个递推式 .   设a[i]表示到第i个方块为止红绿是偶数的方案数, b[i]为红绿恰有一个是偶数 ...

随机推荐

  1. django生产环境中部署

    https://www.cnblogs.com/chenice/p/6921727.html 本节内容 uwsgi 介绍 uwsgi安装使用 nginx安装配置 django with nginx 如 ...

  2. 人工智能,图片识别,与GUI编程

    GUI编程: https://sourceforge.net/projects/pyqt/ 百度aip图片识别 https://pypi.python.org/pypi/baidu-aip

  3. Qt 贪吃蛇小游戏

    简单的实现了走和变大的样子,剩下的还在完善 贴代码 #include "mainwindow.h" #include "ui_mainwindow.h" #in ...

  4. HTTPS初始

    https会话 1客户端 2服务器端 1 ---http三次握手--- 2 1<--------------->2 协商建立ssl会话 选择加密协议 sslv3 1 <------- ...

  5. Spring Security 5.0.x 参考手册 【翻译自官方GIT-2018.06.12】

    源码请移步至:https://github.com/aquariuspj/spring-security/tree/translator/docs/manual/src/docs/asciidoc 版 ...

  6. 最短路径——Bellman-Ford算法

    一.相关定义 最短路径:求源点到某特定点的最短距离 特点:Bellman-Ford算法主要是针对有负权值的图,来判断该图中是否有负权回路或者存在最短路径的点 局限性:算法效率不高,不如SPFA算法 时 ...

  7. el-input为数字时验证问题

    el-input为数字时,初始有值,怎么还会验证不能为空? html: <el-form-item label="审核数量:" prop="checkNum&quo ...

  8. 封装 RabbitMQ.NET

    这篇文章内容会很短,主要是想给大家分享下我最近在做一个简单的rabbitmq客户端类库的封装的经验总结,说是简单其实一点都不简单.为了节省时间我主要按照Library的执行顺序来介绍,在你看来这里仅仅 ...

  9. 转:maven常用命令介绍

    mvn 3.0.4 创建maven项目命令  mvn  archetype:generate   -DgroupId=damocles-autocredit -DartifactId=damocles ...

  10. delphi RGB与TColor的转换

    1.RGB转换为Tcolor function RGBToColor(R,G,B: byte): Tcolor;begin  Result := B Shl 16 or G  shl 8 or R;e ...