【BZOJ2818】Gcd [莫比乌斯反演]
Gcd
Time Limit: 10 Sec Memory Limit: 256 MB
[Submit][Status][Discuss]
Description
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.
Input
一个整数N
Output
如题
Sample Input
Sample Output
HINT
1<=N<=10^7
Solution
直接莫比乌斯反演即可。

然后对于这个式子,我们下界分块一下即可。
Code
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std;
typedef long long s64; const int ONE = 1e7+; int T;
int n,m;
bool isp[ONE];
int prime[],p_num;
int miu[ONE],sum_miu[ONE];
s64 Ans; int get()
{
int res=,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} void Getmiu(int MaxN)
{
miu[] = ;
for(int i=; i<=MaxN; i++)
{
if(!isp[i])
isp[i] = , prime[++p_num] = i, miu[i] = -;
for(int j=; j<=p_num, i*prime[j]<=MaxN; j++)
{
isp[i * prime[j]] = ;
if(i % prime[j] == )
{
miu[i * prime[j]] = ;
break;
}
miu[i * prime[j]] = -miu[i];
}
miu[i] += miu[i-];
}
} int main()
{
n=get();
Getmiu(n);
for(int d=; d<=p_num; d++)
{
if(prime[d] > n) break;
int N = n/prime[d];
for(int i=,j=; i<=N; i=j+)
{
j = min(N, N/(N/i));
Ans += (s64)(N/i) * (N/i) * (miu[j] - miu[i-]);
}
} printf("%lld",Ans);
}
【BZOJ2818】Gcd [莫比乌斯反演]的更多相关文章
- BZOJ2818: Gcd 莫比乌斯反演
分析:筛素数,然后枚举,莫比乌斯反演,然后关键就是分块加速(分块加速在上一篇文章) #include<cstdio> #include<cstring> #include< ...
- [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
- HDU1695 GCD(莫比乌斯反演)
传送门 看了1个多小时,终于懂了一点了 题目大意:给n,m,k.求gcd(x,y) = k(1<=x<=n, 1<=y<=m)的个数 思路:令F(i)表示i|gcd(x,y)的 ...
- hdu 1695 GCD 莫比乌斯反演入门
GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= ...
- 洛谷P2257 YY的GCD 莫比乌斯反演
原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...
- HYSBZ - 2818 Gcd (莫比乌斯反演)
莫比乌斯反演的入门题,设 \(F(x): gcd(i,j)\%x=0\) 的对数,\(f(x): gcd(i,j)=x\)的对数. 易知\[F(p) = \lfloor \frac{n}{p} \rf ...
- Luogu P2257 YY的GCD 莫比乌斯反演
第一道莫比乌斯反演...$qwq$ 设$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]$ $F(n)=\sum_{n|d}f(d)=\lfloor \frac{N ...
- BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MB Submit: 2534 Solved: 1129 [Submit][Status][Discu ...
- BZOJ 2820 luogu 2257 yy的gcd (莫比乌斯反演)
题目大意:求$gcd(i,j)==k,i\in[1,n],j\in[1,m] ,k\in prime,n,m<=10^{7}$的有序数对个数,不超过10^{4}次询问 莫比乌斯反演入门题 为方便 ...
随机推荐
- Bit-map法处理大数据问题
问题引入: 1.给40亿个不重复的unsigned int的整数,没排过序的,然后再给一个数,如何快速判断这个数是否在那40亿个数当中?2.给定一个千万级别数据量的整数集合,判断哪些是重复元素.3.给 ...
- jar命令:打包、查看、更新等
如何把写好的Java程序打包为jar文件呢?下面说的就是java使用命令行打包JAR的方法 1.命令行的方式:打包jar cf JAR文件名称 程序文件名称或者程序所在的文件夹举例:jar cf My ...
- C++重载赋值操作符
1.C++中重载赋值操作函数应该返回什么? 类重载赋值操作符一般都是作为成员函数而存在的,那函数应该返回什么类型呢?参考内置类型的赋值操作,例如 int x,y,z; x=y=z=15; 赋值行为相当 ...
- Ruby中数组的&操作
最近在忙一个项目,好久没有写日志了,项目终于接近尾声,可以适当放松一下,所以记一下在这个项目中发现的有趣事情: 数组的 与 操作 一直以为两个数组A和B相与,谁前谁后都一样,不过这次在项目中突然想试一 ...
- BFS搜索
参考博客:[算法入门]广度/宽度优先搜索(BFS) 适用问题:一个解/最优解 重点:我们怎么运用队列?怎么记录路径? 假设我们要找寻一条从V0到V6的最短路径.(明显看出这条最短路径就是V0-> ...
- ByteArrayInputStream/ByteArrayOutputStream 学习
ByteArrayInputStream: byte[] buff = new byte[1024]; ByteArrayInputStream bAIM = new ByteArrayInputSt ...
- WebStorm中配置ExtJS
原文链接:http://zhidao.baidu.com/link?url=yX0wDWrL-b2P8k3JNNI38Fb6keuAgm0j9E-QBL1KfWXrZgLZ88grAOVJvat6dJ ...
- 201621123033 《Java程序设计》第13周学习总结
1. 本周学习总结 以你喜欢的方式(思维导图.OneNote或其他)归纳总结多网络相关内容. 2. 为你的系统增加网络功能(购物车.图书馆管理.斗地主等)-分组完成 为了让你的系统可以被多个用户通过网 ...
- WCF 透明代理
现在我们通过类似的原理创建一个用于模拟WCF服务端和客户端工作原理的模拟程序.[源代码从这里下载] 目录 一.基本的组件和执行流程 二.创建自定义HttpHandler实现对服务调用请求的处理 三.定 ...
- 玩lua
https://my.oschina.net/wangxuanyihaha/blog/186401