【BZOJ2818】Gcd [莫比乌斯反演]
Gcd
Time Limit: 10 Sec Memory Limit: 256 MB
[Submit][Status][Discuss]
Description
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.
Input
一个整数N
Output
如题
Sample Input
Sample Output
HINT
1<=N<=10^7
Solution
直接莫比乌斯反演即可。

然后对于这个式子,我们下界分块一下即可。
Code
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std;
typedef long long s64; const int ONE = 1e7+; int T;
int n,m;
bool isp[ONE];
int prime[],p_num;
int miu[ONE],sum_miu[ONE];
s64 Ans; int get()
{
int res=,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} void Getmiu(int MaxN)
{
miu[] = ;
for(int i=; i<=MaxN; i++)
{
if(!isp[i])
isp[i] = , prime[++p_num] = i, miu[i] = -;
for(int j=; j<=p_num, i*prime[j]<=MaxN; j++)
{
isp[i * prime[j]] = ;
if(i % prime[j] == )
{
miu[i * prime[j]] = ;
break;
}
miu[i * prime[j]] = -miu[i];
}
miu[i] += miu[i-];
}
} int main()
{
n=get();
Getmiu(n);
for(int d=; d<=p_num; d++)
{
if(prime[d] > n) break;
int N = n/prime[d];
for(int i=,j=; i<=N; i=j+)
{
j = min(N, N/(N/i));
Ans += (s64)(N/i) * (N/i) * (miu[j] - miu[i-]);
}
} printf("%lld",Ans);
}
【BZOJ2818】Gcd [莫比乌斯反演]的更多相关文章
- BZOJ2818: Gcd 莫比乌斯反演
分析:筛素数,然后枚举,莫比乌斯反演,然后关键就是分块加速(分块加速在上一篇文章) #include<cstdio> #include<cstring> #include< ...
- [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
- HDU1695 GCD(莫比乌斯反演)
传送门 看了1个多小时,终于懂了一点了 题目大意:给n,m,k.求gcd(x,y) = k(1<=x<=n, 1<=y<=m)的个数 思路:令F(i)表示i|gcd(x,y)的 ...
- hdu 1695 GCD 莫比乌斯反演入门
GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= ...
- 洛谷P2257 YY的GCD 莫比乌斯反演
原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...
- HYSBZ - 2818 Gcd (莫比乌斯反演)
莫比乌斯反演的入门题,设 \(F(x): gcd(i,j)\%x=0\) 的对数,\(f(x): gcd(i,j)=x\)的对数. 易知\[F(p) = \lfloor \frac{n}{p} \rf ...
- Luogu P2257 YY的GCD 莫比乌斯反演
第一道莫比乌斯反演...$qwq$ 设$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]$ $F(n)=\sum_{n|d}f(d)=\lfloor \frac{N ...
- BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MB Submit: 2534 Solved: 1129 [Submit][Status][Discu ...
- BZOJ 2820 luogu 2257 yy的gcd (莫比乌斯反演)
题目大意:求$gcd(i,j)==k,i\in[1,n],j\in[1,m] ,k\in prime,n,m<=10^{7}$的有序数对个数,不超过10^{4}次询问 莫比乌斯反演入门题 为方便 ...
随机推荐
- elasticsearch-mathc和term的区分
elasticsearch和mysql在思想上是有不同的,elasticsearch有分词一说,比如北京奥运分词成北京,奥运,北京奥运.分词要要考虑两点,一个是查询字符串要不要分词,还有就是原存储字段 ...
- 解决灰色shader与mask冲突的方案
Shader "Custom/Opaque" { Properties { [PerRendererData] _MainTex ("Sprite Texture&quo ...
- Hadoop2.5.2集群部署(完全分布式)
环境介绍 硬件环境 CPU 4 MEM 4G 磁盘 60G 软件环境 OS:centos6.5版本 64位 Hadoop:hadoop2.5.2 64位 JDK: JDK 1.8.0_91 主机配置 ...
- Java中大数的使用与Java入门(NCPC-Intergalactic Bidding)
引入 前几天参加湖南多校的比赛,其中有这样一道题,需要使用高精度,同时需要排序,如果用c++实现的话,重载运算符很麻烦,于是直接学习了一发怎样用Java写大数,同时也算是学习Java基本常识了 题目 ...
- 去西交大考PAT认证
这周六去了西交大去考浙大PAT认证,为什么要写这个博客呢.因为...我不是西交大的学生,找考场就花了我很多时间,各种搜都找不到PAT的考场在哪. 在此记录一下,希望有有缘人再去西交大考试,可以少走点弯 ...
- HDU 4441 Queue Sequence(优先队列+Treap树)(2012 Asia Tianjin Regional Contest)
Problem Description There's a queue obeying the first in first out rule. Each time you can either pu ...
- 完整Android开发基础入门博客专栏
博客地址:http://www.runoob.com/w3cnote/android-tutorial-contents.html
- PokeCats开发者日志(八)
现在是PokeCats游戏开发的第十四天的中午,很不幸著作权申请又被打回来了. 据说是排版后代码行数还差500行,文档不足十版.我擦,原来他们会自己排版的啊. 只好从项目自带的xml里扣代 ...
- Java IO 之 System类
1.使用System.in.read读取,使用System.out.println 输出 package org.zln.io; import java.io.IOException; /** * C ...
- 使用锚点在HTML页面中快速移动
<!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...