【BZOJ4176】Lucas的数论

Description

去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了。

在整理以前的试题时,发现了这样一道题目“求Sigma(f(i)),其中1<=i<=N”,其中 表示i的约数个数。他现在长大了,题目也变难了。
求如下表达式的值:
 
其中 表示ij的约数个数。
他发现答案有点大,只需要输出模1000000007的值。

Input

第一行一个整数n。

Output

一行一个整数ans,表示答案模1000000007的值。

Sample Input

2

Sample Output

8

HINT

对于100%的数据n <= 10^9。

题解:前置技能:

然后直接上莫比乌斯反演

用杜教筛处理μ(d),然后喜闻乐见的分块~

#include <cstdio>
#include <cstring>
#include <iostream>
#include <map>
#define mod 1000000007
using namespace std;
const int m=10000000;
typedef long long ll;
int n,num;
ll ans;
int mu[m+10],sm[m+10],pri[m+10];
bool np[m+10];
map<ll,ll> mp;
ll getsm(ll x)
{
if(x<=m) return sm[x];
if(mp[x]) return mp[x];
ll ret=1,i,last;
for(i=2;i<=x;i=last+1)
{
last=x/(x/i);
ret=(ret-(last-i+1)*getsm(x/i)%mod+mod)%mod;
}
mp[x]=ret;
return ret;
}
ll getf(ll x)
{
ll ret=0,i,last;
for(i=1;i<=x;i=last+1)
{
last=x/(x/i);
ret=(ret-(last-i+1)*(x/i)%mod+mod)%mod;
}
return ret*ret%mod;
}
int main()
{
scanf("%d",&n);
ll i,j,last;
sm[1]=mu[1]=1;
for(i=2;i<=m;i++)
{
if(!np[i]) pri[++num]=i,mu[i]=-1;
sm[i]=sm[i-1]+mu[i];
for(j=1;j<=num&&i*pri[j]<=m;j++)
{
np[i*pri[j]]=1;
if(i%pri[j]==0)
{
mu[i*pri[j]]=0;
break;
}
mu[i*pri[j]]=-mu[i];
}
}
for(i=1;i<=n;i=last+1)
{
last=n/(n/i);
ans=(ans+(getsm(last)-getsm(i-1)+mod)%mod*getf(n/i)%mod)%mod;
}
printf("%lld",ans);
return 0;
}

【BZOJ4176】Lucas的数论 莫比乌斯反演的更多相关文章

  1. 【bzoj4176】Lucas的数论 莫比乌斯反演+杜教筛

    Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i< ...

  2. 【bzoj 4176】 Lucas的数论 莫比乌斯反演(杜教筛)

    Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求Sigma(f(i)),其中1<=i<=N”,其 ...

  3. BZOJ 4176 Lucas的数论 莫比乌斯反演+杜教筛

    题意概述:求,n<=10^9,其中d(n)表示n的约数个数. 分析: 首先想要快速计算上面的柿子就要先把d(ij)表示出来,有个神奇的结论: 证明:当且仅当a,b没有相同的质因数的时候我们统计其 ...

  4. 51Nod1675 序列变换 数论 莫比乌斯反演

    原文http://www.cnblogs.com/zhouzhendong/p/8665675.html 题目传送门 - 51Nod1675 题意 给定序列$a,b$,让你求满足$\gcd(x,y)= ...

  5. UOJ#62. 【UR #5】怎样跑得更快 数论 莫比乌斯反演

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ62.html 题解 太久没更博客了,该拯救我的博客了. $$\sum_{1\leq j \leq n} \ ...

  6. 【bzoj3601】一个人的数论 莫比乌斯反演+高斯消元

    题目描述 题解 莫比乌斯反演+高斯消元 (前方高能:所有题目中给出的幂次d,公式里为了防止混淆,均使用了k代替) #include <cstdio> #include <cstrin ...

  7. [SPOJ VLATTICE]Visible Lattice Points 数论 莫比乌斯反演

    7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...

  8. BZOJ4176 Lucas的数论 【莫比乌斯反演 + 杜教筛】

    题目 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i<=N", ...

  9. BZOJ4176: Lucas的数论

    Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求Sigma(f(i)),其中1<=i<=N”,其 ...

随机推荐

  1. 乌云主站所有漏洞综合分析&乌云主站漏洞统计

    作者:RedFree 最近的工作需要将乌云历史上比较有含金量的漏洞分析出来,顺便对其它的数据进行了下分析:统计往往能说明问题及分析事物的发展规律,所以就有了此文.(漏洞数据抓取自乌云主站,漏洞编号从1 ...

  2. 几个opengl立方体绘制案例

    VC6 下载 http://blog.csdn.net/bcbobo21cn/article/details/44200205 opengl环境配置 http://blog.csdn.net/bcbo ...

  3. SQLSTATE[HY000] [2002] Can't connect to local MySQL server through socket '/tmp/mysql.sock' (2)

    SQLSTATE[HY000] [2002] Can't connect to local MySQL server through socket '/tmp/mysql.sock' (2)   这个 ...

  4. react-app-rewired 定义全局变量

    通过react-app-rewired插件,react-app-rewired的作用就是在不eject的情况下,覆盖create-react-app的配置.

  5. [性能测试] LoadRunner结果分析 – TPS(转)

    [性能测试] LoadRunner结果分析 – TPS 针对吞吐率和 TPS 的关系,这个在结果分析中如何使用,就个人经验和朋友讨论后,提出如下建议指导,欢迎同僚指正. 相关定义 响应时间 = 网络响 ...

  6. Android基于UDP的局域网聊天通信

    代码地址如下:http://www.demodashi.com/demo/12057.html 记得把这几点描述好咯:代码实现过程 + 项目文件结构截图 + 演示效果 1. 开发环境 1.1 开发工具 ...

  7. iOS开发-在Swift里使用AFNetworking方法

    在OC里使用惯了AFNetworking,比较喜欢这一个第三方库,在别的途径里得知可以在Swift里使用AFNetworking.但是那个时候我不知道具体的操作是怎样的,于是我只能去百度.GOOGLE ...

  8. 开源静态分析工具androguard体验

    原文链接:http://blog.csdn.net/xbalien29/article/details/21885297 虽然在windows端免费版的IDA.VTS等工具都可用来静态分析,但相对来说 ...

  9. Python课程之字典

    字典(dict) 一.定义:字典类型在其他语言中又称为map,是一种映射类型,并且{key:value}无序,其关键字必须为不可变类型(如:元组/字符串),在同一个字典中关键字必须互不相同(若出现相同 ...

  10. Visual Studio提示“无法启动IIS Express Web服务器”或者“无法连接Web服务器IIS Express ”的解决方法

    解决办法:找到程序根目录,删除隐藏的.vs文件夹即可. 问题原因:一般是项目拷贝或者系统设置变更所造成的.