LeetCode Target Sum
原题链接在这里:https://leetcode.com/problems/target-sum/description/
题目:
You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symbols +
and -
. For each integer, you should choose one from +
and -
as its new symbol.
Find out how many ways to assign symbols to make sum of integers equal to target S.
Example 1:
Input: nums is [1, 1, 1, 1, 1], S is 3.
Output: 5
Explanation: -1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3 There are 5 ways to assign symbols to make the sum of nums be target 3.
Note:
- The length of the given array is positive and will not exceed 20.
- The sum of elements in the given array will not exceed 1000.
- Your output answer is guaranteed to be fitted in a 32-bit integer.
题解:
List some examples. e.g. 1,1,1,1,1.
If all of them are positive, it is 5, all negitative, it is -5. Beyond [-5,5], it can't happen, thus, the ways count is 0.
For this sum question, let dp[i] denotes the sum up to i, the count of ways.
Iterate each num in nums. For num, it could be + or -. say first 1. Then it could -1 or 1.
The ways to -1 is 1, ways to 1 is 1. It is because dp[0] accumlate to dp[1] and dp[-1].
递推时, 上个可能结果或加或减当前num得到新的结果, 不同ways的数目在新结果下累计. 只有对应count大于0时才可能是上个可能结果, because it would not be out of index.
起始值dp[0 + sum] = 1. 可能结果为0的不同ways数目是1. sum is offset. dp[0] means sum up to -sum.
Time Complexity: O(sum * n). sum是nums所有num的和. n = nums.length
Space: O(sum).
AC Java:
class Solution {
public int findTargetSumWays(int[] nums, int S) {
if(nums == null || nums.length == 0){
return 0;
} int sum = 0;
for(int num : nums){
sum += num;
} if(sum < S || -sum > S){
return 0;
} int [] dp = new int[2*sum+1];
//sum相当于 offset
dp[0+sum] = 1;
for(int num : nums){
int [] next = new int[2*sum+1];
for(int k = 0; k<2*sum+1; k++){
if(dp[k] > 0){
next[k+num] += dp[k];
next[k-num] += dp[k];
}
}
dp = next;
}
return dp[sum + S];
}
}
Method 2:
nums中一部分用的+号 相当于positive, 另一部分用的 - 号相当于negative. 分成两组.
sum(p) - sum(n) = target.
sum(p) + sum(n) + sum(p)-sum(n) = target + sum(p) + sum(n)
2*sum(p) = target + sum(nums)
相当于在nums中找有多少种subarray, subarray自身的和是(target + sum(nums))/2的问题.
subSum求解这个转化问题.
存储到当前数字得到所有结果ways数目. 为什么循环中i要从大到小呢. 这其实是dp的space compression.
update新的dp时会用到上一轮前面的值,所以要从后往前更新. 这样更新时保证用到的都是上轮的值.
Time Complexity: O(sum*nums.length). sum是nums所有num的和.
Space: O(sum).
AC Java:
class Solution {
public int findTargetSumWays(int[] nums, int S) {
int sum = 0;
for(int num : nums){
sum += num;
} if(S < -sum || S > sum || (S+sum)%2 != 0){
return 0;
} return subSum(nums, (S+sum)/2);
} private int subSum(int [] nums, int target){
int [] dp = new int[target+1];
dp[0] = 1;
for(int num : nums){
for(int i = target; i>=num; i--){
dp[i] += dp[i-num];
}
} return dp[target];
}
}
LeetCode Target Sum的更多相关文章
- [LeetCode] Target Sum 目标和
You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symb ...
- Leetcode——Target Sum
Question You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you ha ...
- Leetcode之深度优先搜索(DFS)专题-494. 目标和(Target Sum)
Leetcode之深度优先搜索(DFS)专题-494. 目标和(Target Sum) 深度优先搜索的解题详细介绍,点击 给定一个非负整数数组,a1, a2, ..., an, 和一个目标数,S.现在 ...
- [Leetcode] DP -- Target Sum
You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symb ...
- LN : leetcode 494 Target Sum
lc 494 Target Sum 494 Target Sum You are given a list of non-negative integers, a1, a2, ..., an, and ...
- Longest subarray of target sum
2018-07-08 13:24:31 一.525. Contiguous Array 问题描述: 问题求解: 我们都知道对于subarray的问题,暴力求解的时间复杂度为O(n ^ 2),问题规模已 ...
- LeetCode:Path Sum I II
LeetCode:Path Sum Given a binary tree and a sum, determine if the tree has a root-to-leaf path such ...
- [leetcode] Combination Sum and Combination SumII
Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C wher ...
- 剑指offer 65. 不用加减乘除做加法(Leetcode 371. Sum of Two Integers)
剑指offer 65. 不用加减乘除做加法(Leetcode 371. Sum of Two Integers) https://leetcode.com/problems/sum-of-two-in ...
随机推荐
- Django ORM --- 建表、查询、删除基础
1.什么是ORM ORM的全称是Object Relational Mapping,即对象关系映射.它的实现思想就是将关系数据库中表的数据映射成为对象,以对象的形式展现,这样开发人员就可以把对数据库的 ...
- UVA11383 Golden Tiger Claw
题目 UVA11383 Golden Tiger Claw 做法 \(KM\)好题啊,满足所有边\(l(x)+l(y)≥w(x,y)\)(个人理解,如不对请及时留言),这样能满足\(\sum\limi ...
- INSPIRED启示录 读书笔记 - 第27章 合理运用瀑布式开发方法
瀑布式开发方法的基本原则 1.采用阶段式开发:软件开发过程被事先分成固定的几个阶段,撰写书面的需求说明文档.设计高层软件架构.设计低层细节.编写代码.测试.部署 2.采用阶段式评审:每个阶段结束后,对 ...
- JAVA基础补漏--字符串
字符串常量池 String a="abc"; String b="abc"; char[] str = {"a","b" ...
- JAVA获取Spring上下文
1. 添加监听 public class SpringContextListener implements ServletContextListener { //获取spring注入的bean对象 p ...
- 错误 1 类型“System.Web.Mvc.ModelClientValidationRule”同时存在于“c:\Progra型“System.Web.Mvc.ModelClientValidationRule”同时存在
解决方案: step1:首先关闭你应用程序方案,在你保存项目的文件夹下找到ProjectName.csproj ProjectName是你实际的应用程序名称. step2:用文字编辑器打开你找到它找 ...
- MVC 绑定 下拉框数据
HTML: <div class="form-group col-sm-12"> <div class="col-sm-4"> < ...
- 如何在java中导入jar包
通常在lib文件夹中存放从外部引入的jar包 所以在项目上右击,new 一个folder,命名为lib 然后把JAR文件复制进去. 然后再在项目上右击,build Path ——configure b ...
- JS实现选项卡切换效果
1.在网页制作过程中,我们经常会用到选项卡切换效果,它能够让我们的网页在交互和布局上都能得到提升 原理:在布局好选项卡的HTML结构后,我们可以看的出来,选项卡实际上是三个选项卡标头和三个对应的版块, ...
- BZOJ2878 [Noi2012]迷失游乐园
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...