LeetCode Target Sum
原题链接在这里:https://leetcode.com/problems/target-sum/description/
题目:
You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symbols + and -. For each integer, you should choose one from + and - as its new symbol.
Find out how many ways to assign symbols to make sum of integers equal to target S.
Example 1:
Input: nums is [1, 1, 1, 1, 1], S is 3.
Output: 5
Explanation: -1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3 There are 5 ways to assign symbols to make the sum of nums be target 3.
Note:
- The length of the given array is positive and will not exceed 20.
- The sum of elements in the given array will not exceed 1000.
- Your output answer is guaranteed to be fitted in a 32-bit integer.
题解:
List some examples. e.g. 1,1,1,1,1.
If all of them are positive, it is 5, all negitative, it is -5. Beyond [-5,5], it can't happen, thus, the ways count is 0.
For this sum question, let dp[i] denotes the sum up to i, the count of ways.
Iterate each num in nums. For num, it could be + or -. say first 1. Then it could -1 or 1.
The ways to -1 is 1, ways to 1 is 1. It is because dp[0] accumlate to dp[1] and dp[-1].
递推时, 上个可能结果或加或减当前num得到新的结果, 不同ways的数目在新结果下累计. 只有对应count大于0时才可能是上个可能结果, because it would not be out of index.
起始值dp[0 + sum] = 1. 可能结果为0的不同ways数目是1. sum is offset. dp[0] means sum up to -sum.
Time Complexity: O(sum * n). sum是nums所有num的和. n = nums.length
Space: O(sum).
AC Java:
class Solution {
public int findTargetSumWays(int[] nums, int S) {
if(nums == null || nums.length == 0){
return 0;
}
int sum = 0;
for(int num : nums){
sum += num;
}
if(sum < S || -sum > S){
return 0;
}
int [] dp = new int[2*sum+1];
//sum相当于 offset
dp[0+sum] = 1;
for(int num : nums){
int [] next = new int[2*sum+1];
for(int k = 0; k<2*sum+1; k++){
if(dp[k] > 0){
next[k+num] += dp[k];
next[k-num] += dp[k];
}
}
dp = next;
}
return dp[sum + S];
}
}
Method 2:
nums中一部分用的+号 相当于positive, 另一部分用的 - 号相当于negative. 分成两组.
sum(p) - sum(n) = target.
sum(p) + sum(n) + sum(p)-sum(n) = target + sum(p) + sum(n)
2*sum(p) = target + sum(nums)
相当于在nums中找有多少种subarray, subarray自身的和是(target + sum(nums))/2的问题.
subSum求解这个转化问题.
存储到当前数字得到所有结果ways数目. 为什么循环中i要从大到小呢. 这其实是dp的space compression.
update新的dp时会用到上一轮前面的值,所以要从后往前更新. 这样更新时保证用到的都是上轮的值.
Time Complexity: O(sum*nums.length). sum是nums所有num的和.
Space: O(sum).
AC Java:
class Solution {
public int findTargetSumWays(int[] nums, int S) {
int sum = 0;
for(int num : nums){
sum += num;
}
if(S < -sum || S > sum || (S+sum)%2 != 0){
return 0;
}
return subSum(nums, (S+sum)/2);
}
private int subSum(int [] nums, int target){
int [] dp = new int[target+1];
dp[0] = 1;
for(int num : nums){
for(int i = target; i>=num; i--){
dp[i] += dp[i-num];
}
}
return dp[target];
}
}
LeetCode Target Sum的更多相关文章
- [LeetCode] Target Sum 目标和
You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symb ...
- Leetcode——Target Sum
Question You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you ha ...
- Leetcode之深度优先搜索(DFS)专题-494. 目标和(Target Sum)
Leetcode之深度优先搜索(DFS)专题-494. 目标和(Target Sum) 深度优先搜索的解题详细介绍,点击 给定一个非负整数数组,a1, a2, ..., an, 和一个目标数,S.现在 ...
- [Leetcode] DP -- Target Sum
You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symb ...
- LN : leetcode 494 Target Sum
lc 494 Target Sum 494 Target Sum You are given a list of non-negative integers, a1, a2, ..., an, and ...
- Longest subarray of target sum
2018-07-08 13:24:31 一.525. Contiguous Array 问题描述: 问题求解: 我们都知道对于subarray的问题,暴力求解的时间复杂度为O(n ^ 2),问题规模已 ...
- LeetCode:Path Sum I II
LeetCode:Path Sum Given a binary tree and a sum, determine if the tree has a root-to-leaf path such ...
- [leetcode] Combination Sum and Combination SumII
Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C wher ...
- 剑指offer 65. 不用加减乘除做加法(Leetcode 371. Sum of Two Integers)
剑指offer 65. 不用加减乘除做加法(Leetcode 371. Sum of Two Integers) https://leetcode.com/problems/sum-of-two-in ...
随机推荐
- 验证——正则<37>
1,郵箱合法性驗證 /* * 郵箱合法性驗證 * @method matchTel * @papram{string} str,電子郵箱 * @return{boolean} * */ functio ...
- 【HackerRank】Pairs
题目链接:Pairs 完全就是Two Sum问题的变形!Two Sum问题是要求数组中和正好等于K的两个数,这个是求数组中两个数的差正好等于K的两个数.总结其实就是“骑驴找马”的问题:即当前遍历ar[ ...
- Adding Flexcan driver support on Kernel
Adding Flexcan driver support on Kernel On kernel menuconfig, add the following items: [*] Networkin ...
- DNS 安装配置
DNS 安装配置 实验环境 一台主机:Linux Centos 6.5 32位 安装包: DNS服务:bind.i686 DNS测试工具:bind-utils DNS 服务安装 1.yum安装DNS服 ...
- 主攻ASP.NET MVC4.0之重生:Jquery Mobile 列表
代码: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title ...
- mybaties mapping中if
mapping中 if的简单使用 <insert id="addPassenger" resultMap="EmpResultMap" parameter ...
- RpcException:No provider available for remote service异常
出现RpcException:No provider available for remote service异常,表示没有可用的服务提供者. 解决思路: 1.检查连接的注册中心是否正确 2.到注册中 ...
- 【bzoj3238】差异[AHOI2013](后缀数组+单调栈)
题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3238 这道题从大概半年以前就开始啃了,不过当时因为一些细节没调出来,看了Sakits神犇 ...
- QT中phonon的安装和使用
http://write.blog.csdn.net/postedit Phonon严格来说其实非为Qt的library,Phonon原本就是KDE 4的开放原始码多媒体API,後来与Qt合并与开发, ...
- MATLAB中feval与eval的区别
feval函数有两种调用形式1.[y1, y2, ...] = feval(fhandle, x1, ..., xn)2.[y1, y2, ...] = feval(fname, x1, ..., x ...