原题链接在这里:https://leetcode.com/problems/target-sum/description/

题目:

You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symbols + and -. For each integer, you should choose one from + and - as its new symbol.

Find out how many ways to assign symbols to make sum of integers equal to target S.

Example 1:

Input: nums is [1, 1, 1, 1, 1], S is 3.
Output: 5
Explanation: -1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3 There are 5 ways to assign symbols to make the sum of nums be target 3.

Note:

  1. The length of the given array is positive and will not exceed 20.
  2. The sum of elements in the given array will not exceed 1000.
  3. Your output answer is guaranteed to be fitted in a 32-bit integer.

题解:

List some examples. e.g. 1,1,1,1,1.

If all of them are positive, it is 5, all negitative, it is -5. Beyond [-5,5], it can't happen, thus, the ways count is 0.

For this sum question, let dp[i] denotes the sum up to i, the count of ways.

Iterate each num in nums. For num, it could be + or -. say first 1. Then it could -1 or 1.

The ways to -1 is 1, ways to 1 is 1. It is because dp[0] accumlate to dp[1] and dp[-1].

递推时, 上个可能结果或加或减当前num得到新的结果, 不同ways的数目在新结果下累计.  只有对应count大于0时才可能是上个可能结果, because it would not be out of index.

起始值dp[0 + sum] = 1. 可能结果为0的不同ways数目是1. sum is offset. dp[0] means sum up to -sum.

Time Complexity: O(sum * n). sum是nums所有num的和. n = nums.length

Space: O(sum).

AC Java:

 class Solution {
public int findTargetSumWays(int[] nums, int S) {
if(nums == null || nums.length == 0){
return 0;
} int sum = 0;
for(int num : nums){
sum += num;
} if(sum < S || -sum > S){
return 0;
} int [] dp = new int[2*sum+1];
//sum相当于 offset
dp[0+sum] = 1;
for(int num : nums){
int [] next = new int[2*sum+1];
for(int k = 0; k<2*sum+1; k++){
if(dp[k] > 0){
next[k+num] += dp[k];
next[k-num] += dp[k];
}
}
dp = next;
}
return dp[sum + S];
}
}

Method 2:

nums中一部分用的+号 相当于positive, 另一部分用的 - 号相当于negative. 分成两组.

sum(p) - sum(n) = target.

sum(p) + sum(n) + sum(p)-sum(n) = target + sum(p) + sum(n)

2*sum(p) = target + sum(nums)

相当于在nums中找有多少种subarray, subarray自身的和是(target + sum(nums))/2的问题.

subSum求解这个转化问题.

存储到当前数字得到所有结果ways数目. 为什么循环中i要从大到小呢. 这其实是dp的space compression.

update新的dp时会用到上一轮前面的值,所以要从后往前更新. 这样更新时保证用到的都是上轮的值.

Time Complexity: O(sum*nums.length). sum是nums所有num的和.

Space: O(sum).

AC Java:

class Solution {
public int findTargetSumWays(int[] nums, int S) {
int sum = 0;
for(int num : nums){
sum += num;
} if(S < -sum || S > sum || (S+sum)%2 != 0){
return 0;
} return subSum(nums, (S+sum)/2);
} private int subSum(int [] nums, int target){
int [] dp = new int[target+1];
dp[0] = 1;
for(int num : nums){
for(int i = target; i>=num; i--){
dp[i] += dp[i-num];
}
} return dp[target];
}
}

类似Partition Equal Subset Sum.

LeetCode Target Sum的更多相关文章

  1. [LeetCode] Target Sum 目标和

    You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symb ...

  2. Leetcode——Target Sum

    Question You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you ha ...

  3. Leetcode之深度优先搜索(DFS)专题-494. 目标和(Target Sum)

    Leetcode之深度优先搜索(DFS)专题-494. 目标和(Target Sum) 深度优先搜索的解题详细介绍,点击 给定一个非负整数数组,a1, a2, ..., an, 和一个目标数,S.现在 ...

  4. [Leetcode] DP -- Target Sum

    You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symb ...

  5. LN : leetcode 494 Target Sum

    lc 494 Target Sum 494 Target Sum You are given a list of non-negative integers, a1, a2, ..., an, and ...

  6. Longest subarray of target sum

    2018-07-08 13:24:31 一.525. Contiguous Array 问题描述: 问题求解: 我们都知道对于subarray的问题,暴力求解的时间复杂度为O(n ^ 2),问题规模已 ...

  7. LeetCode:Path Sum I II

    LeetCode:Path Sum Given a binary tree and a sum, determine if the tree has a root-to-leaf path such ...

  8. [leetcode] Combination Sum and Combination SumII

    Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C wher ...

  9. 剑指offer 65. 不用加减乘除做加法(Leetcode 371. Sum of Two Integers)

    剑指offer 65. 不用加减乘除做加法(Leetcode 371. Sum of Two Integers) https://leetcode.com/problems/sum-of-two-in ...

随机推荐

  1. Django ORM --- 建表、查询、删除基础

    1.什么是ORM ORM的全称是Object Relational Mapping,即对象关系映射.它的实现思想就是将关系数据库中表的数据映射成为对象,以对象的形式展现,这样开发人员就可以把对数据库的 ...

  2. UVA11383 Golden Tiger Claw

    题目 UVA11383 Golden Tiger Claw 做法 \(KM\)好题啊,满足所有边\(l(x)+l(y)≥w(x,y)\)(个人理解,如不对请及时留言),这样能满足\(\sum\limi ...

  3. INSPIRED启示录 读书笔记 - 第27章 合理运用瀑布式开发方法

    瀑布式开发方法的基本原则 1.采用阶段式开发:软件开发过程被事先分成固定的几个阶段,撰写书面的需求说明文档.设计高层软件架构.设计低层细节.编写代码.测试.部署 2.采用阶段式评审:每个阶段结束后,对 ...

  4. JAVA基础补漏--字符串

    字符串常量池 String a="abc"; String b="abc"; char[] str = {"a","b" ...

  5. JAVA获取Spring上下文

    1. 添加监听 public class SpringContextListener implements ServletContextListener { //获取spring注入的bean对象 p ...

  6. 错误 1 类型“System.Web.Mvc.ModelClientValidationRule”同时存在于“c:\Progra型“System.Web.Mvc.ModelClientValidationRule”同时存在

    解决方案: step1:首先关闭你应用程序方案,在你保存项目的文件夹下找到ProjectName.csproj  ProjectName是你实际的应用程序名称. step2:用文字编辑器打开你找到它找 ...

  7. MVC 绑定 下拉框数据

    HTML: <div class="form-group col-sm-12"> <div class="col-sm-4"> < ...

  8. 如何在java中导入jar包

    通常在lib文件夹中存放从外部引入的jar包 所以在项目上右击,new 一个folder,命名为lib 然后把JAR文件复制进去. 然后再在项目上右击,build Path ——configure b ...

  9. JS实现选项卡切换效果

    1.在网页制作过程中,我们经常会用到选项卡切换效果,它能够让我们的网页在交互和布局上都能得到提升 原理:在布局好选项卡的HTML结构后,我们可以看的出来,选项卡实际上是三个选项卡标头和三个对应的版块, ...

  10. BZOJ2878 [Noi2012]迷失游乐园

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...