原题链接在这里:https://leetcode.com/problems/target-sum/description/

题目:

You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symbols + and -. For each integer, you should choose one from + and - as its new symbol.

Find out how many ways to assign symbols to make sum of integers equal to target S.

Example 1:

Input: nums is [1, 1, 1, 1, 1], S is 3.
Output: 5
Explanation: -1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3 There are 5 ways to assign symbols to make the sum of nums be target 3.

Note:

  1. The length of the given array is positive and will not exceed 20.
  2. The sum of elements in the given array will not exceed 1000.
  3. Your output answer is guaranteed to be fitted in a 32-bit integer.

题解:

List some examples. e.g. 1,1,1,1,1.

If all of them are positive, it is 5, all negitative, it is -5. Beyond [-5,5], it can't happen, thus, the ways count is 0.

For this sum question, let dp[i] denotes the sum up to i, the count of ways.

Iterate each num in nums. For num, it could be + or -. say first 1. Then it could -1 or 1.

The ways to -1 is 1, ways to 1 is 1. It is because dp[0] accumlate to dp[1] and dp[-1].

递推时, 上个可能结果或加或减当前num得到新的结果, 不同ways的数目在新结果下累计.  只有对应count大于0时才可能是上个可能结果, because it would not be out of index.

起始值dp[0 + sum] = 1. 可能结果为0的不同ways数目是1. sum is offset. dp[0] means sum up to -sum.

Time Complexity: O(sum * n). sum是nums所有num的和. n = nums.length

Space: O(sum).

AC Java:

 class Solution {
public int findTargetSumWays(int[] nums, int S) {
if(nums == null || nums.length == 0){
return 0;
} int sum = 0;
for(int num : nums){
sum += num;
} if(sum < S || -sum > S){
return 0;
} int [] dp = new int[2*sum+1];
//sum相当于 offset
dp[0+sum] = 1;
for(int num : nums){
int [] next = new int[2*sum+1];
for(int k = 0; k<2*sum+1; k++){
if(dp[k] > 0){
next[k+num] += dp[k];
next[k-num] += dp[k];
}
}
dp = next;
}
return dp[sum + S];
}
}

Method 2:

nums中一部分用的+号 相当于positive, 另一部分用的 - 号相当于negative. 分成两组.

sum(p) - sum(n) = target.

sum(p) + sum(n) + sum(p)-sum(n) = target + sum(p) + sum(n)

2*sum(p) = target + sum(nums)

相当于在nums中找有多少种subarray, subarray自身的和是(target + sum(nums))/2的问题.

subSum求解这个转化问题.

存储到当前数字得到所有结果ways数目. 为什么循环中i要从大到小呢. 这其实是dp的space compression.

update新的dp时会用到上一轮前面的值,所以要从后往前更新. 这样更新时保证用到的都是上轮的值.

Time Complexity: O(sum*nums.length). sum是nums所有num的和.

Space: O(sum).

AC Java:

class Solution {
public int findTargetSumWays(int[] nums, int S) {
int sum = 0;
for(int num : nums){
sum += num;
} if(S < -sum || S > sum || (S+sum)%2 != 0){
return 0;
} return subSum(nums, (S+sum)/2);
} private int subSum(int [] nums, int target){
int [] dp = new int[target+1];
dp[0] = 1;
for(int num : nums){
for(int i = target; i>=num; i--){
dp[i] += dp[i-num];
}
} return dp[target];
}
}

类似Partition Equal Subset Sum.

LeetCode Target Sum的更多相关文章

  1. [LeetCode] Target Sum 目标和

    You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symb ...

  2. Leetcode——Target Sum

    Question You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you ha ...

  3. Leetcode之深度优先搜索(DFS)专题-494. 目标和(Target Sum)

    Leetcode之深度优先搜索(DFS)专题-494. 目标和(Target Sum) 深度优先搜索的解题详细介绍,点击 给定一个非负整数数组,a1, a2, ..., an, 和一个目标数,S.现在 ...

  4. [Leetcode] DP -- Target Sum

    You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symb ...

  5. LN : leetcode 494 Target Sum

    lc 494 Target Sum 494 Target Sum You are given a list of non-negative integers, a1, a2, ..., an, and ...

  6. Longest subarray of target sum

    2018-07-08 13:24:31 一.525. Contiguous Array 问题描述: 问题求解: 我们都知道对于subarray的问题,暴力求解的时间复杂度为O(n ^ 2),问题规模已 ...

  7. LeetCode:Path Sum I II

    LeetCode:Path Sum Given a binary tree and a sum, determine if the tree has a root-to-leaf path such ...

  8. [leetcode] Combination Sum and Combination SumII

    Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C wher ...

  9. 剑指offer 65. 不用加减乘除做加法(Leetcode 371. Sum of Two Integers)

    剑指offer 65. 不用加减乘除做加法(Leetcode 371. Sum of Two Integers) https://leetcode.com/problems/sum-of-two-in ...

随机推荐

  1. 验证——正则<37>

    1,郵箱合法性驗證 /* * 郵箱合法性驗證 * @method matchTel * @papram{string} str,電子郵箱 * @return{boolean} * */ functio ...

  2. 【HackerRank】Pairs

    题目链接:Pairs 完全就是Two Sum问题的变形!Two Sum问题是要求数组中和正好等于K的两个数,这个是求数组中两个数的差正好等于K的两个数.总结其实就是“骑驴找马”的问题:即当前遍历ar[ ...

  3. Adding Flexcan driver support on Kernel

    Adding Flexcan driver support on Kernel On kernel menuconfig, add the following items: [*] Networkin ...

  4. DNS 安装配置

    DNS 安装配置 实验环境 一台主机:Linux Centos 6.5 32位 安装包: DNS服务:bind.i686 DNS测试工具:bind-utils DNS 服务安装 1.yum安装DNS服 ...

  5. 主攻ASP.NET MVC4.0之重生:Jquery Mobile 列表

    代码: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title ...

  6. mybaties mapping中if

    mapping中 if的简单使用 <insert id="addPassenger" resultMap="EmpResultMap" parameter ...

  7. RpcException:No provider available for remote service异常

    出现RpcException:No provider available for remote service异常,表示没有可用的服务提供者. 解决思路: 1.检查连接的注册中心是否正确 2.到注册中 ...

  8. 【bzoj3238】差异[AHOI2013](后缀数组+单调栈)

    题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3238 这道题从大概半年以前就开始啃了,不过当时因为一些细节没调出来,看了Sakits神犇 ...

  9. QT中phonon的安装和使用

    http://write.blog.csdn.net/postedit Phonon严格来说其实非为Qt的library,Phonon原本就是KDE 4的开放原始码多媒体API,後来与Qt合并与开发, ...

  10. MATLAB中feval与eval的区别

    feval函数有两种调用形式1.[y1, y2, ...] = feval(fhandle, x1, ..., xn)2.[y1, y2, ...] = feval(fname, x1, ..., x ...