传送门(权限)

题目大意

给定一个有向无环图,可以删去一个点和所有与它相连的边,使得图的其余部分最长路径最小,求这个位置和最小的最长路径长度。

题解

对于每一条边$u\rightarrow v$,设$F_u$表示从任意位置出发到达$u$的最多边数,设$G_v$表示从$v$出发到达任意位置的最多边数,那么最长链即为$\max\{F_u+G_v+1\}$。

考虑删掉点$x$。

对于字拓扑序在$x$之前的$y$,那么一定有一条链长度为$F_y$,拓扑序在$x$之后的$y$一定有一条长度为$G_y$的链。对于拓扑序和$x$属于并列关系的$y$,和它相邻的所有边一定$(u\rightarrow v)$,其中$u=y$或$v=y$,显然存在$F_u+G_v+1$的链。

那么按照拓扑序处理每一个点,维护一个集合$S$表示当前有效的链。

初始时$S$只用所有$G_x$,按照顺序拓扑序序枚举点$x$,然后删去它新失效的边是所有$(u\rightarrow x)$的边的$F_u+G_x+1$以及$G_x$,这时集合内的元素的最大值就是最长链的长度。然后删去它之后生效的边是所有$(x\rightarrow v)$的$F_x+G_v+1$,因为要确保接下来的拓扑序相互并列的两个点能够相互更新,不难发现删去所有它的后继节点后这些$x\rightarrow v$的$F_x+G_v+1$会自行删除。

在所有的答案中取最小值顺便记录位置即可。

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define LL long long
#define M 500020
using namespace std;
const int BS=(1<<20)+5; char Buffer[BS],*HD,*TL;
char Getchar(){if(HD==TL){TL=(HD=Buffer)+fread(Buffer,1,BS,stdin);} return (HD==TL)?EOF:*HD++;}
int read(){
int nm=0,fh=1; char cw=Getchar();
for(;!isdigit(cw);cw=Getchar()) if(cw=='-') fh=-fh;
for(;isdigit(cw);cw=Getchar()) nm=nm*10+(cw-'0');
return nm*fh;
}
int n,m,fs[M][2],nt[M<<1][2],to[M<<1][2],otd[M][2];
int q[M],hd,tl,,ans,pos,tmp,dis[M][2];
priority_queue<int> Q,D;
inline void rw(){while((!D.empty())&&D.top()==Q.top()) Q.pop(),D.pop();}
#define del(a) D.push(a),rw()
#define ins(a) Q.push(a)
#define tp Q.top()
void link(int x,int y){
nt[tmp][0]=fs[x][0],nt[tmp][1]=fs[y][1],otd[x][0]++,otd[y][1]++;
to[tmp][0]=y,to[tmp][1]=x,fs[x][0]=fs[y][1]=tmp,tmp++;
}
int DP(int x,int kd){
if(!otd[x][kd]) return 0; if(dis[x][kd]) return dis[x][kd];
for(int i=fs[x][kd];i!=-1;i=nt[i][kd]) dis[x][kd]=max(dis[x][kd],DP(to[i][kd],kd));
++dis[x][kd]; return dis[x][kd];
}
int main(){
n=read(),m=read(),memset(fs,-1,sizeof(fs)),ans=n-1,pos=1;
for(int i=1;i<=m;i++){int x=read(),y=read();link(x,y);}
for(int i=1;i<=n;i++) DP(i,0),DP(i,1),ins(dis[i][0]);
for(int i=1;i<=n;i++) if(!otd[i][1]) q[tl++]=i;
while(hd<tl){
int x=q[hd++],maxn; del(dis[x][0]);
for(int i=fs[x][1];i!=-1;i=nt[i][1]) del(dis[to[i][1]][1]+dis[x][0]+1);
maxn=tp; if(maxn<ans) ans=maxn,pos=x; ins(dis[x][1]);
for(int i=fs[x][0];i!=-1;i=nt[i][0]){
ins(dis[to[i][0]][0]+dis[x][1]+1);
if(!(--otd[to[i][0]][1])) q[tl++]=to[i][0];
}
}printf("%d %d\n",pos,ans); return 0;
}

  

BZOJ3832 Rally的更多相关文章

  1. POI2014

    ...一个shabi和一堆神题的故事 今天只写了两道 之后随缘更吧 啊 顺便 snake我是不会更的 bzoj3829 POI2014 Farmcraft mhy住在一棵有n个点的树的1号结点上,每个 ...

  2. 【BZOJ3832】[POI2014]Rally(拓扑排序,动态规划)

    [BZOJ3832][POI2014]Rally(拓扑排序,动态规划) 题面 BZOJ,权限题 洛谷 题解 这题好强啊,感觉学了好多东西似的. 首先发现了一个图画的很好的博客,戳这里 然后我来补充一下 ...

  3. 【BZOJ-3832】Rally 拓扑序 + 线段树 (神思路题!)

    3832: [Poi2014]Rally Time Limit: 20 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 168  Solved:  ...

  4. BZOJ3832[Poi2014]Rally——权值线段树+拓扑排序

    题目描述 An annual bicycle rally will soon begin in Byteburg. The bikers of Byteburg are natural long di ...

  5. 【bzoj3832】Rally

    Portal -->bzoj3832 Description ​ 给你一个DAG,每条边长度都是\(1\),请找一个点满足删掉这个点之后剩余图中的最长路最短 Solution ​​ 这题的话感觉 ...

  6. BZOJ3832 [Poi2014]Rally 【拓扑序 + 堆】

    题目链接 BZOJ3832 题解 神思路orz,根本不会做 设\(f[i]\)为到\(i\)的最长路,\(g[i]\)为\(i\)出发的最长路,二者可以拓扑序后\(dp\)求得 那么一条边\((u,v ...

  7. BZOJ3832 : [Poi2014]Rally

    f[0][i]为i出发的最长路,f[1][i]为到i的最长路 新建源汇S,T,S向每个点连边,每个点向T连边 将所有点划分为两个集合S与T,一开始S中只有S,其它点都在T中 用一棵线段树维护所有连接属 ...

  8. BZOJ3832: [Poi2014]Rally(拓扑排序 堆)

    题意 题目链接 Sol 最直观的思路是求出删除每个点后的最长路,我们考虑这玩意儿怎么求 设\(f[i]\)表示以\(i\)结尾的最长路长度,\(g[i]\)表示以\(i\)开始的最长路长度 根据DAG ...

  9. 并不对劲的bzoj3832: [Poi2014]Rally

    传送门-> 这题的原理看上去很神奇. 称拓扑图中入度为0的点为“起点”,出度为0的点为“终点”. 因为“起点”和“终点”可能有很多个,算起来会很麻烦,所以新建“超级起点”S,向所有点连边,“超级 ...

随机推荐

  1. JavaScript:学习笔记(5)——箭头函数=>以及实践

    JavaScript:学习笔记(5)——箭头函数=>以及实践 ES6标准新增了一种新的函数:Arrow Function(箭头函数).本文参考的链接如下: MDN箭头函数:https://dev ...

  2. centos6.8 修改yum安装镜像源

    查看centos系统版本 cat /etc/redhat-release CentOS系统更换软件安装源 第一步:备份你的原镜像文件,以免出错后可以恢复. mv /etc/yum.repos.d/Ce ...

  3. 计算机网络概述---传输层 UDP和TCP

    传输层的功能 传输层为应用进程间提供端到端的逻辑通信(网络层是提供主机之间的逻辑通信), 传输层两大重要的功能:复用 和 分用. 复用:在发送端,多个应用进程公用一个传输层: 分用:在接收端,传输层会 ...

  4. shell中的$()、${}、$(())、(())

    $( ) 与 ` ` (反引号)在 bash shell 中,$( ) 与 ` ` (反引号) 都是用来做命令替换用(command substitution)的. 所谓的命令替换与我们第五章学过的变 ...

  5. OS路径模块命令

    os.remove():删除指定文件os.rmdir():删除指定目录os.mkdir():创建单级目录os.makedirs():创建多级目录os.listdir(dirname):列出dirnam ...

  6. INSPIRED启示录 读书笔记 - 第11章 评估产品机会

    市场需求文档 大多数的公司产品选择权是由高管.市场部门.开发团队甚至是大客户,在这种情况下公司会跳过市场需求文档或是误写成产品规范文档,回避评估产品机会 在正常情况下,应该是由业务人员会撰写一份论证产 ...

  7. Ubuntu 使用国内apt源

    编辑/etc/apt/source-list deb http://cn.archive.ubuntu.com/ubuntu/ trusty main restricted universe mult ...

  8. java resources 红叉 Cannot change version of project facet Dynamic Web Module to 2.5

    在使用maven导入项目的时候,markers提示Cannot change version of project facet Dynamic Web Module to 2.5,不能将工程转换为2. ...

  9. Ubuntu或Linux搭建网站环境常见问题详解

    本屌丝常见的问题已经全部记录如下,如大家有其他问题欢迎随时跟我进行交流. 1.无法进行软件源安装  提示信息:Package has no installation candidate 具体信息如下: ...

  10. 为什么原生的servlet是线程不安全的而Struts2是线程安全的?

    因为原生的servlet在整个application生命周期中,只在初次访问的时候实例化一次,以后都不会再实例化,只会调用Server方法进行响应,所以如果在servlet类中定义成员变量,那么就会让 ...