Description

Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.

Input

The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.

Output

Output the elements of S modulo m in the same way as A is given.

Sample Input

2 2 4
0 1
1 1

Sample Output

1 2
2 3
题意:给你一个矩阵A,且已知S = A + A^2 + A^3 +...+ A^k,求S
题解:假设有A + A^2 + A^3 +...+ A^n
那么如果n为偶数,该式子可以写为
(I+A^(N/2))*(A+A^2+...+A^(N/2))
如果n为奇数,则可以拆成一个矩阵A^n和n为偶数的另一串式子。
于是就可以分治了,1700ms莫名慌
学到了如何memset结构体里的数组,还是有收获的。
代码如下:
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std; struct matrix
{
int a[][];
matrix()
{
memset(a,,sizeof(a));
}
}; int n,k,m; void print(matrix &ans)
{
for(int i=; i<=n; i++)
{
for(int j=; j<=n-; j++)
{
printf("%d ",ans.a[i][j]);
}
printf("%d\n",ans.a[i][n]);
}
} matrix add(matrix a,matrix b)
{
matrix c;
for(int i=; i<=n; i++)
{
for(int j=; j<=n; j++)
{
c.a[i][j]=a.a[i][j]+b.a[i][j];
if(c.a[i][j]>=m)
{
c.a[i][j]%=m;
}
}
}
return c;
} matrix mul(matrix a,matrix b)
{
matrix c;
for(int i=; i<=n; i++)
{
for(int j=; j<=n; j++)
{
for(int k=; k<=n; k++)
{
c.a[i][j]+=a.a[i][k]*b.a[k][j];
if(c.a[i][j]>=m)
{
c.a[i][j]%=m;
}
}
}
}
return c;
} matrix kasumi(matrix a,int b)
{
matrix ans;
for(int i=; i<=n; i++)
{
ans.a[i][i]=;
}
if(b==)
{
return ans;
}
if(b==)
{
return a;
}
while(b)
{
if(b&)
{
ans=mul(ans,a);
}
a=mul(a,a);
b>>=;
}
return ans;
} matrix solve(matrix a,int k)
{
if(k==)
{
return a;
}
if(k&)
{
return add(solve(a,k-),kasumi(a,k));
}
else
{
return mul(add(kasumi(a,),kasumi(a,k>>)),solve(a,k>>));
}
} int main()
{
scanf("%d%d%d",&n,&k,&m);
matrix a,ans;
for(int i=; i<=n; i++)
{
for(int j=; j<=n; j++)
{
scanf("%d",&a.a[i][j]);
}
}
ans=solve(a,k);
print(ans);
}


POJ3233 Matrix Power Series(矩阵快速幂+分治)的更多相关文章

  1. POJ3233:Matrix Power Series(矩阵快速幂+二分)

    http://poj.org/problem?id=3233 题目大意:给定矩阵A,求A + A^2 + A^3 + … + A^k的结果(两个矩阵相加就是对应位置分别相加).输出的数据mod m.k ...

  2. POJ3233 Matrix Power Series 矩阵快速幂 矩阵中的矩阵

    Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 27277   Accepted:  ...

  3. POJ3233:Matrix Power Series(矩阵快速幂+递推式)

    传送门 题意 给出n,m,k,求 \[\sum_{i=1}^kA^i\] A是矩阵 分析 我们首先会想到等比公式,然后得到这样一个式子: \[\frac{A^{k+1}-E}{A-E}\] 发现要用矩 ...

  4. POJ 3233:Matrix Power Series 矩阵快速幂 乘积

    Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 18450   Accepted:  ...

  5. POJ 3233 Matrix Power Series 矩阵快速幂

    设S[k] = A + A^2 +````+A^k. 设矩阵T = A[1] 0 E E 这里的E为n*n单位方阵,0为n*n方阵 令A[k] = A ^ k 矩阵B[k] = A[k+1] S[k] ...

  6. POJ 3233 Matrix Power Series 矩阵快速幂+二分求和

    矩阵快速幂,请参照模板 http://www.cnblogs.com/pach/p/5978475.html 直接sum=A+A2+A3...+Ak这样累加肯定会超时,但是 sum=A+A2+...+ ...

  7. POJ3233 Matrix Power Series(快速幂求等比矩阵和)

    题面 \(solution:\) 首先,如果题目只要我们求\(A^K\) 那这一题我们可以直接模版矩乘快速幂来做,但是它现在让我们求$\sum_{i=1}^{k}{(A^i)} $ 所以我们思考一下这 ...

  8. POJ-3233 Matrix Power Series 矩阵A^1+A^2+A^3...求和转化

    S(k)=A^1+A^2...+A^k. 保利求解就超时了,我们考虑一下当k为偶数的情况,A^1+A^2+A^3+A^4...+A^k,取其中前一半A^1+A^2...A^k/2,后一半提取公共矩阵A ...

  9. POJ3233Matrix Power Series(矩阵快速幂)

    题意 题目链接 给出$n \times n$的矩阵$A$,求$\sum_{i = 1}^k A^i $,每个元素对$m$取模 Sol 考虑直接分治 当$k$为奇数时 $\sum_{i = 1}^k A ...

随机推荐

  1. 转载:解决eclipse导出javadoc时的“错误: 编码GBK的不可映射字符”问题

    转自:http://blog.csdn.net/psy1100/article/details/51179342 今天要将自己的API接口和MODEL导出来一份java doc参考文档, 但是在导出的 ...

  2. python3 安装 past 包

    python3 安装 past 包 $ pip install future 错误现象 缺乏包的引用 from past.types import unicode 参考链接 https://pypi. ...

  3. ssh-copy-id:/usr/bin/ssh-copy-id: ERROR: No identities found

    $ ssh-copy-id remote-machine 公钥,私钥已经生成,执行上述命令完毕出现如下错误: /usr/bin/ssh-copy-id: ERROR: No identities fo ...

  4. (转)Oracle中动态SQL详解

    本文转载自:http://www.cnblogs.com/gaolonglong/archive/2011/05/31/2064790.html 1.静态SQLSQL与动态SQL Oracle编译PL ...

  5. java代码实现鼠标双击出现画图-----------paint()方法由系统自动调用,且一定是小写的字母p

    总结:在运行过程中,自己不是很认真,没有检查自己写的代码,结果是无论你怎么运行,双击 frame都没用,因为系统根本就没有调用paint()方法绘图.所以很重要的是实现这个方法 package com ...

  6. mysql事务之一:MySQL数据库事务隔离级别(Transaction Isolation Level)及锁的实现原理

    一.数据库隔离级别 数据库隔离级别有四种,应用<高性能mysql>一书中的说明: 然后说说修改事务隔离级别的方法: 1.全局修改,修改mysql.ini配置文件,在最后加上 1 #可选参数 ...

  7. USB设备驱动总结

    现象:把USB设备接到PC        (韦老师总结) 1. 右下角弹出"发现android phone" 2. 跳出一个对话框,提示你安装驱动程序 问1. 既然还没有" ...

  8. 学习笔记::fft

    上次学fft还是5月份,昨天发现已经忘记怎么推导了,代码也看不懂了,就又学习了一发,大概是看menci的博客 0.fft可以进行多项式乘法,朴素的乘法跟手算一样是O(n^2),fft可以通过分治做到n ...

  9. mybatis 动态sql语句(3)

    mybatis 的动态sql语句是基于OGNL表达式的.可以方便的在 sql 语句中实现某些逻辑. 总体说来mybatis 动态SQL 语句主要有以下几类: 1. if 语句 (简单的条件判断) 2. ...

  10. chkdsk工具怎么修复

    对于一些硬盘存储问题,即使windows自带的系统工具,也可以将其修复,比如chkdsk程序.请阅读下文,了解如何使用chkdsk来修复简单的硬盘问题. 工具/原料 windows7 chkdsk 方 ...