Description

Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.

Input

The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.

Output

Output the elements of S modulo m in the same way as A is given.

Sample Input

2 2 4
0 1
1 1

Sample Output

1 2
2 3
题意:给你一个矩阵A,且已知S = A + A^2 + A^3 +...+ A^k,求S
题解:假设有A + A^2 + A^3 +...+ A^n
那么如果n为偶数,该式子可以写为
(I+A^(N/2))*(A+A^2+...+A^(N/2))
如果n为奇数,则可以拆成一个矩阵A^n和n为偶数的另一串式子。
于是就可以分治了,1700ms莫名慌
学到了如何memset结构体里的数组,还是有收获的。
代码如下:
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std; struct matrix
{
int a[][];
matrix()
{
memset(a,,sizeof(a));
}
}; int n,k,m; void print(matrix &ans)
{
for(int i=; i<=n; i++)
{
for(int j=; j<=n-; j++)
{
printf("%d ",ans.a[i][j]);
}
printf("%d\n",ans.a[i][n]);
}
} matrix add(matrix a,matrix b)
{
matrix c;
for(int i=; i<=n; i++)
{
for(int j=; j<=n; j++)
{
c.a[i][j]=a.a[i][j]+b.a[i][j];
if(c.a[i][j]>=m)
{
c.a[i][j]%=m;
}
}
}
return c;
} matrix mul(matrix a,matrix b)
{
matrix c;
for(int i=; i<=n; i++)
{
for(int j=; j<=n; j++)
{
for(int k=; k<=n; k++)
{
c.a[i][j]+=a.a[i][k]*b.a[k][j];
if(c.a[i][j]>=m)
{
c.a[i][j]%=m;
}
}
}
}
return c;
} matrix kasumi(matrix a,int b)
{
matrix ans;
for(int i=; i<=n; i++)
{
ans.a[i][i]=;
}
if(b==)
{
return ans;
}
if(b==)
{
return a;
}
while(b)
{
if(b&)
{
ans=mul(ans,a);
}
a=mul(a,a);
b>>=;
}
return ans;
} matrix solve(matrix a,int k)
{
if(k==)
{
return a;
}
if(k&)
{
return add(solve(a,k-),kasumi(a,k));
}
else
{
return mul(add(kasumi(a,),kasumi(a,k>>)),solve(a,k>>));
}
} int main()
{
scanf("%d%d%d",&n,&k,&m);
matrix a,ans;
for(int i=; i<=n; i++)
{
for(int j=; j<=n; j++)
{
scanf("%d",&a.a[i][j]);
}
}
ans=solve(a,k);
print(ans);
}


POJ3233 Matrix Power Series(矩阵快速幂+分治)的更多相关文章

  1. POJ3233:Matrix Power Series(矩阵快速幂+二分)

    http://poj.org/problem?id=3233 题目大意:给定矩阵A,求A + A^2 + A^3 + … + A^k的结果(两个矩阵相加就是对应位置分别相加).输出的数据mod m.k ...

  2. POJ3233 Matrix Power Series 矩阵快速幂 矩阵中的矩阵

    Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 27277   Accepted:  ...

  3. POJ3233:Matrix Power Series(矩阵快速幂+递推式)

    传送门 题意 给出n,m,k,求 \[\sum_{i=1}^kA^i\] A是矩阵 分析 我们首先会想到等比公式,然后得到这样一个式子: \[\frac{A^{k+1}-E}{A-E}\] 发现要用矩 ...

  4. POJ 3233:Matrix Power Series 矩阵快速幂 乘积

    Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 18450   Accepted:  ...

  5. POJ 3233 Matrix Power Series 矩阵快速幂

    设S[k] = A + A^2 +````+A^k. 设矩阵T = A[1] 0 E E 这里的E为n*n单位方阵,0为n*n方阵 令A[k] = A ^ k 矩阵B[k] = A[k+1] S[k] ...

  6. POJ 3233 Matrix Power Series 矩阵快速幂+二分求和

    矩阵快速幂,请参照模板 http://www.cnblogs.com/pach/p/5978475.html 直接sum=A+A2+A3...+Ak这样累加肯定会超时,但是 sum=A+A2+...+ ...

  7. POJ3233 Matrix Power Series(快速幂求等比矩阵和)

    题面 \(solution:\) 首先,如果题目只要我们求\(A^K\) 那这一题我们可以直接模版矩乘快速幂来做,但是它现在让我们求$\sum_{i=1}^{k}{(A^i)} $ 所以我们思考一下这 ...

  8. POJ-3233 Matrix Power Series 矩阵A^1+A^2+A^3...求和转化

    S(k)=A^1+A^2...+A^k. 保利求解就超时了,我们考虑一下当k为偶数的情况,A^1+A^2+A^3+A^4...+A^k,取其中前一半A^1+A^2...A^k/2,后一半提取公共矩阵A ...

  9. POJ3233Matrix Power Series(矩阵快速幂)

    题意 题目链接 给出$n \times n$的矩阵$A$,求$\sum_{i = 1}^k A^i $,每个元素对$m$取模 Sol 考虑直接分治 当$k$为奇数时 $\sum_{i = 1}^k A ...

随机推荐

  1. mysql实战优化之五: 更新/插入优化 sql优化

    通常情况下,当访问某张表的时候,读取者首先必须获取该表的锁,如果有写入操作到达,那么写入者一直等待读取者完成操作(查询开始之后就不能中断,因此允许读取者完成操作).当读取者完成对表的操作的时候,锁就会 ...

  2. Java-Runoob:Java 对象和类

    ylbtech-Java-Runoob:Java 对象和类 1.返回顶部 1. Java 对象和类 Java作为一种面向对象语言.支持以下基本概念: 多态 继承 封装 抽象 类 对象 实例 方法 重载 ...

  3. PHP ! 非运算符 与 if 判断深入研究

    !非 !x 如果x不为true则返回true. 我们经常用!进行一些判断. 看实例,我们发现经过'非'处理之后,都转化成了bool值.用于if判断很有用. var_dump(!0); // bool( ...

  4. thinkphp中的session的使用和理解!

    session的作用:session可以长时间的保存数据,不丢失. session的常用于: 1.登录,保存登录信息 2.保存购物车信息 3.保存验证码信息 定义session常量 define('W ...

  5. PHP实现日志写入log.txt

    引言:有时候调试,看不到效果,需要通过写入文件来实现. 案例: <?php $myfile = fopen("log.txt", "a+") or die ...

  6. php中,如何将编译后的代码,反编译回去。

    编译后 <?php /*********************/ /* */ /* Version : 5.1.0 */ /* Author : RM */ /* Comment : 0712 ...

  7. TCP与UDP比较 以及并发编程基础知识

    一.tcp比udp真正可靠地原因 1.为什么tcp比udp传输可靠地原因: 我们知道在传输数据的时候,数据是先存在操作系统的缓存中,然后发送给客户端,在客户端也是要经过客户端的操作系统的,因为这个过程 ...

  8. java成神之——集合框架之ArrayList,Lists,Sets

    集合 集合种类 ArrayList 声明 增删改查元素 遍历几种方式 空集合 子集合 不可变集合 LinkedList Lists 排序 类型转换 取交集 移动元素 删除交集元素 Sets 集合特点 ...

  9. SVN安装和使用总结

    SVN简介: 为什么要使用SVN? 程序员在编写程序的过程中,每个程序员都会生成很多不同的版本,这就需要程序员有效的管理代码,在需要的时候可以迅速,准确取出相应的版本. Subversion是什么? ...

  10. 数据分析工具pandas简介

    什么是Pandas? Pandas的名称来自于面板数据(panel data)和Python数据分析(data analysis). Pandas是一个强大的分析结构化数据的工具集,基于NumPy构建 ...