[BZOJ1965][AHOI2005] 洗牌 - 扩展欧几里得
题目描述
为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动。
由于Samuel星球相当遥远,科学家们要在飞船中度过相当长的一段时间,小联提议用扑克牌打发长途旅行中的无聊时间。玩了几局之后,大家觉得单纯玩扑克牌对于像他们这样的高智商人才来说太简单了。有人提出了扑克牌的一种新的玩法。
对于扑克牌的一次洗牌是这样定义的,将一叠N(N为偶数)张扑克牌平均分成上下两叠,取下面一叠的第一张作为新的一叠的第一张,然后取上面一叠的第一张作为新的一叠的第二张,再取下面一叠的第二张作为新的一叠的第三张……如此交替直到所有的牌取完。
如果对一叠6张的扑克牌1 2 3 4 5 6,进行一次洗牌的过程如下图所示:

从图中可以看出经过一次洗牌,序列1 2 3 4 5 6变为4 1 5 2 6 3。当然,再对得到的序列进行一次洗牌,又会变为2 4 6 1 3 5。
游戏是这样的,如果给定长度为N的一叠扑克牌,并且牌面大小从1开始连续增加到N(不考虑花色),对这样的一叠扑克牌,进行M次洗牌。最先说出经过洗牌后的扑克牌序列中第L张扑克牌的牌面大小是多少的科学家得胜。小联想赢取游戏的胜利,你能帮助他吗?
输入输出格式
输入格式:
输入文件中有三个用空格间隔的整数,分别表示N,M,L
(其中0<N≤10^10 ,0 ≤M≤10^10,且N为偶数)。
输出格式:
单行输出指定的扑克牌的牌面大小。
输入输出样例
6 2 3
6
说明
0<N≤10^10 ,0 ≤M≤10^10,且N为偶数
题解:
打表并没有发现规律于是决定手推一波公式;
x -> x * 2(x <= n/2)
x -> x * 2 - n - 1(x > n/2)
仔细看看...发现改变后的位置是(x*2)mod(n+1)
于是..x*2^m ≡ L mod (n + 1) ,x是我们要求的位置
于是扩展欧几里得就解决了..
Code:
#include <iostream>
#include <cstdio>
using namespace std;
#define ll long long
ll n, m, L;
inline ll ksm(ll x, ll y)
{
ll res = ;
while(y){if(y&)res=res*x%(n+);x=x*x%(n+);y>>=;}
return res;
}
inline ll gcd(ll a, ll b){return b==?a:gcd(b,a%b);}
inline void exgcd(ll a, ll b, ll &x, ll &y)
{
if (b==) {x=,y=;return;}
exgcd(b,a%b,x,y);
ll t = x;
x = y;
y = t - a / b * y;
} int main()
{
scanf("%lld%lld%lld",&n,&m,&L);
ll A = ksm(, m), B = n + , C = L ;
ll g = gcd(A, B);
A /= g, B /= g, C /= g;
ll x, y;
exgcd(A, B, x, y);
ll ans = ((x * C) % B + B) % B;
cout << ans ;
return ;
}
[BZOJ1965][AHOI2005] 洗牌 - 扩展欧几里得的更多相关文章
- BZOJ 1965 洗牌(扩展欧几里得)
容易发现,对于牌堆里第x张牌,在一次洗牌后会变成2*x%(n+1)的位置. 于是问题就变成了求x*2^m%(n+1)=L,x在[1,n]范围内的解. 显然可以用扩展欧几里得求出. # include ...
- bzoj1965 [Ahoi2005]洗牌
Description 为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动. 由于Samuel星球相当遥远,科学家们要在飞船中度过相当长的一段时间,小联 ...
- 洛谷——P2054 [AHOI2005]洗牌(扩展欧几里得,逆元)
P2054 [AHOI2005]洗牌 扩展欧拉定理求逆元 $1 2 3 4 5 6$$4 1 5 2 6 3$$2 4 6 1 3 5$$1 2 3 4 5 6$ 手推一下样例,你就会发现是有规律的: ...
- 【BZOJ1965】[AHOI2005]洗牌(数论)
[BZOJ1965][AHOI2005]洗牌(数论) 题面 BZOJ 洛谷 题解 考虑反过来做这个洗牌的操作,假定当前牌是第\(l\)张. 因为之前洗的时候考虑了前一半和后一半,所以根据\(l\)的奇 ...
- Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) C.Ray Tracing (模拟或扩展欧几里得)
http://codeforces.com/contest/724/problem/C 题目大意: 在一个n*m的盒子里,从(0,0)射出一条每秒位移为(1,1)的射线,遵从反射定律,给出k个点,求射 ...
- UVA 12169 Disgruntled Judge 枚举+扩展欧几里得
题目大意:有3个整数 x[1], a, b 满足递推式x[i]=(a*x[i-1]+b)mod 10001.由这个递推式计算出了长度为2T的数列,现在要求输入x[1],x[3],......x[2T- ...
- UVA 10090 Marbles 扩展欧几里得
来源:http://www.cnblogs.com/zxhl/p/5106678.html 大致题意:给你n个球,给你两种盒子.第一种盒子每个盒子c1美元,可以恰好装n1个球:第二种盒子每个盒子c2元 ...
- POJ 1061 青蛙的约会 扩展欧几里得
扩展欧几里得模板套一下就A了,不过要注意刚好整除的时候,代码中有注释 #include <iostream> #include <cstdio> #include <cs ...
- 【64测试20161112】【Catalan数】【数论】【扩展欧几里得】【逆】
Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到C ...
随机推荐
- Hadoop学习笔记—20.网站日志分析项目案例
1.1 项目来源 本次要实践的数据日志来源于国内某技术学习论坛,该论坛由某培训机构主办,汇聚了众多技术学习者,每天都有人发帖.回帖,如图1所示. 图1 项目来源网站-技术学习论坛 本次实践的目的就在于 ...
- Linux 笔记 - 第十三章 Linux 系统日常管理之(二)Linux 防火墙和任务计划
博客地址:http://www.moonxy.com 一.前言 Linux 下的的防火墙功能是非常丰富的,作为 Linux 系统工程师有必要了解一下.防火墙一般分为硬件防火墙和软件防火墙.但是,不管是 ...
- python语言程序设计部分习题
第二章 python程序实例解析 程序练习题 2.1 实例1的修改,采用eval(input(<提示内容>))替换现有输入部分,并使输出的温度值为整数. vv 2.2 汇率兑换程序.按 ...
- ssh免密码登陆(集群多台机器之间免密码登陆)
1. 首先在配置hosts文件(每台机器都要) 进入root权限 vi /etc/hosts 添加每台机器的ip + 主机名,例如: 172.18.23.201 hadoop1 172.18.23.1 ...
- 树莓派3安装openwrt
1.在编译openwrt之前,需要先安装依赖包,命令如下: sudo apt-get install autoconf binutils bison bzip2 flex gawk gettext m ...
- 【linux】【jenkins】自动化运维二 安装插件
gitlab安装教程参考:https://www.cnblogs.com/jxd283465/p/11525629.html 1.Maven Integration Plugins Jenkins安装 ...
- 规则引擎 - drools 使用讲解(简单版) - Java
drools规则引擎 项目链接 现状: 运维同学(各种同学)通过后台管理界面直接配置相关规则,这里是通过输入框.下拉框等完成输入的,非常简单: 规则配置完毕后,前端请求后端,此时服务端根据参数(即规则 ...
- 第一个SharePoint Add-in工程
一.创建SharePoint hosted 工程 1.创建承载SharePoint Add-in独立域 首先,确定承载的应用程序的独立域名,可以使用类似这样的域名apps.contoso.com,鉴于 ...
- linux 更改文件所属用户及用户组
在Linux中,创建一个文件时,该文件的拥有者都是创建该文件的用户.该文件用户可以修改该文件的拥有者及用户组,当然root用户可以修改任何文件的拥有者及用户组.在Linux中,对于文件的权限(rw ...
- Spring Boot 2.x基础教程:Swagger接口分类与各元素排序问题详解
之前通过Spring Boot 2.x基础教程:使用Swagger2构建强大的API文档一文,我们学习了如何使用Swagger为Spring Boot项目自动生成API文档,有不少用户留言问了关于文档 ...