Paper | Residual Dense Network for Image Super-Resolution
发表在2018年CVPR。
摘要和结论都在强调方法的优势。我们还是先从RDN的结构看起,再理解它的背景和思想。
Residual dense block & network
乍一看,这种block结构就是在内部采用了稠密连接,在外部采用残差学习。并且,RDN在全局上也是类似的设计:内部稠密,整体残差。无论是RDB还是RDN,内部都同时采用了\(3 \times 3\)和\(1 \times 1\)卷积。
我们来看看作者怎么解释这种设计的合理性,以及实验是否验证了其有效性。
和DenseNet的不同
在RDN和RDB中,我们取消了BN和池化层,因为作者认为它们不仅消耗资源,而且阻碍了网络学习(批注:在一些去噪工作中,有些作者也发现了BN无益于除高斯噪声以外的噪声去除)。
在DenseNet中,不同的block之间需要过渡层,但在这里采用\(1 \times 1\)卷积,即所谓的local feature fusion。(批注:本质是一样的,只不过过渡层多了BN和池化层,因为需要服务于高层视觉任务——图像分类)
全局和局部都有残差学习,而DenseNet中没有。这种局部残差连接,使得上一个RDB的输出,可以直接联系至当前RDB的输出结果。这就是作者所谓的contiguous memory(CM)。
算了,看完解释,我已经不想看实验了,因为还是比较trick的(没有太多能让人high的思想点,解释有点勉强)。我们回头看看摘要和结论吧。
摘要和结论
摘要
A very deep convolutional neural network (CNN) has recently achieved great success for image super-resolution (SR) and offered hierarchical features as well. However, most deep CNN based SR models do not make full use of the hierarchical features from the original low-resolution (LR) images, thereby achieving relatively-low performance. In this paper, we propose a novel residual dense network (RDN) to address this problem in image SR. We fully exploit the hierarchical features from all the convolutional layers. Specifically, we propose residual dense block (RDB) to extract abundant local features via dense connected convolutional layers. RDB further allows direct connections from the state of preceding RDB to all the layers of current RDB, leading to a contiguous memory (CM) mechanism. Local feature fusion in RDB is then used to adaptively learn more effective features from preceding and current local features and stabilizes the training of wider network. After fully obtaining dense local features, we use global feature fusion to jointly and adaptively learn global hierarchical features in a holistic way. Experiments on benchmark datasets with different degradation models show that our RDN achieves favorable performance against state-of-the-art methods.
结论
In this paper, we proposed a very deep residual dense network (RDN) for image SR, where residual dense block (RDB) serves as the basic build module. In each RDB, the dense connections between each layers allow full usage of local layers. The local feature fusion (LFF) not only stabilizes the training wider network, but also adaptively controls the preservation of information from current and preceding RDBs. RDB further allows direct connections between the preceding RDB and each layer of current block, leading to a contiguous memory (CM) mechanism. The local residual leaning (LRL) further improves the flow of information and gradient. Moreover, we propose global feature fusion (GFF) to extract hierarchical features in the LR space. By fully using local and global features, our RDN leads to a dense feature fusion and deep supervision. We use the same RDN structure to handle three degradation models and real-world data. Extensive benchmark evaluations well demonstrate that our RDN achieves superiority over state-of-theart methods.
我来翻译一下:
在每个RDB内部,都有一个全局短连接;因此上一个RDB的输出,会直接送到当前RDB的输出端;这就是作者所谓的连续记忆(contiguous memory)机制。
每个RDB之间采用了\(1 \times 1\)卷积,作者将其称为local feature fusion;这不就是大家都在用的、降低通道数的方法嘛,有点故弄玄虚哦。作者还强调:该LFF可以稳定宽网络的训练。实际上,DenseNet为了降低计算量,特地让网络更窄。这是在增大冗余(增强泛化能力)和减小计算量之间的权衡,详情参见我的博客。
Paper | Residual Dense Network for Image Super-Resolution的更多相关文章
- Paper | Dynamic Residual Dense Network for Image Denoising
目录 1. 故事 2. 动机 3. 做法 3.1 DRDB 3.2 训练方法 4. 实验 发表于2019 Sensors.这篇文章的思想可能来源于2018 ECCV的SkipNet[11]. 没开源, ...
- ASRWGAN: Wasserstein Generative Adversarial Network for Audio Super Resolution
ASEGAN:WGAN音频超分辨率 这篇文章并不具有权威性,因为没有发表,说不定是外国的某个大学的毕业设计,或者课程结束后的作业.或者实验报告. CS230: Deep Learning, Sprin ...
- Paper | Residual Attention Network for Image Classification
目录 1. 相关工作 2. Residual Attention Network 2.1 Attention残差学习 2.2 自上而下和自下而上 2.3 正则化Attention 最近看了些关于att ...
- Speech Super Resolution Generative Adversarial Network
博客作者:凌逆战 博客地址:https://www.cnblogs.com/LXP-Never/p/10874993.html 论文作者:Sefik Emre Eskimez , Kazuhito K ...
- Residual Attention Network for Image Classification(CVPR 2017)详解
一.Residual Attention Network 简介 这是CVPR2017的一篇paper,是商汤.清华.香港中文和北邮合作的文章.它在图像分类问题上,首次成功将极深卷积神经网络与人类视觉注 ...
- Computer Vision Applied to Super Resolution
Capel, David, and Andrew Zisserman. "Computer vision applied to super resolution." Signal ...
- Super Resolution
Super Resolution Accepted : 121 Submit : 187 Time Limit : 1000 MS Memory Limit : 65536 KB Super ...
- Google Pixel 超分辨率--Super Resolution Zoom
Google Pixel 超分辨率--Super Resolution Zoom Google 的Super Res Zoom技术,主要用于在zoom时增强画面细节以及提升在夜景下的效果. 文章的主要 ...
- Paper | Multi-scale Dense Networks for Resource Efficient Image Classification
目录 故事背景 方法 两种加速策略 网络设计 网络优化 失败设计 回头品味 实验 数据集和数据处理 结果 第二次阅读 本文不是第一个提出early exit思想的 写作流畅 网络回顾 其他 发表在IC ...
随机推荐
- github 码云 chrome文件树形插件
偶然间看到github有一个树形插件,对于代码层级较多的项目来说体验提升了很多 github的chrome插件 chrome商店: https://chrome.google.com/webstore ...
- Android常用adb命令总结(二)
adb shell 命令 简单点讲,adb 命令是 adb 这个程序自带的一些命令,而 adb shell 则是调用的 Android 系统中的命令,这些 Android 特有的命令都放在了 Andr ...
- jQuery 源码分析(十三) 数据操作模块 DOM属性 详解
jQuery的属性操作模块总共有4个部分,本篇说一下第2个部分:DOM属性部分,用于修改DOM元素的属性的(属性和特性是不一样的,一般将property翻译为属性,attribute翻译为特性) DO ...
- 给HttpClient添加请求头(HttpClientFactory)
前言 在微服务的大环境下,会出现这个服务调用这个接口,那个接口的情况.假设出了问题,需要排查的时候,我们要怎么关联不同服务之间的调用情况呢?换句话就是说,这个请求的结果不对,看看是那里出了问题. 最简 ...
- 解决HttpServletRequest的输入流只能读取一次的问题
背景 通常对安全性有要求的接口都会对请求参数做一些签名验证,而我们一般会把验签的逻辑统一放到过滤器或拦截器里,这样就不用每个接口都去重复编写验签的逻辑. 在一个项目中会有很多的接口,而不同的接口可能接 ...
- 【centOS】centOS7 下载
地址:http://mirrors.aliyun.com/centos/ 进入国内的阿里云的,这里CentOS 7提供了三种ISO镜像文件的下载:DVD ISO.Everything ISO.Mini ...
- Jenkins 有关 Maven 的内容
Jenkins Maven 插件安装 在安装完 Jenkins 后,我们想添加新的项目 为 Maven 项目时,发现找不到这个选项. 原因是我们没有安装插件 Maven Integration. 在 ...
- java高并发系列 - 第5天:深入理解进程和线程
进程 进程(Process)是计算机中的程序关于某数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位,是操作系统结构的基础.程序是指令.数据及其组织形式的描述,进程是程序的实体. 进程具有的 ...
- MySQL(6)---变量
MySQL(6)-变量 这里学习变量主要是为后面学习存储过程和函数做铺垫. 变量的分类 系统变量: 全局变量 会话变量 自定义变量: 用户变量 局部变量 一.系统变量 1.概述 说明:变量由系统定义, ...
- Initialize a Property After Creating an Object创建对象后初始化属性 即如何设置对象的默认值(EF)
In this lesson, you will learn how to set the default value for a particular property of a business ...