题目描述

ftiasch 有 N 个物品, 体积分别是 W1, W2, …, WN。 由于她的疏忽, 第 i 个物品丢失了。 “要使用剩下的 N – 1 物品装满容积为 x 的背包,有几种方法呢?” — 这是经典的问题了。她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M的 Count(i, x) 表格。

输入格式

第1行:两个整数 N (1 ≤ N ≤ 2 × 10^3)N(1≤N≤2×103) 和 M (1 ≤ M ≤ 2 × 10^3)M(1≤M≤2×103),物品的数量和最大的容积。

第2行: N 个整数 W1, W2, …, WN, 物品的体积。

输出格式

一个 N × M 的矩阵, Count(i, x)的末位数字。

输入输出样例

输入 #1复制

3 2
1 1 2
输出 #1复制

11
11
21

说明/提示

如果物品3丢失的话,只有一种方法装满容量是2的背包,即选择物品1和物品2。

题面如上。

看完会很自然地发现它是一个dp(计算方案数)

然后,如果不是漏一个的话,会非常简单(选或不选,硬算),方程式也简单得很,我这种弱鸡都能一眼看出来。

考虑一下删一个元素该怎么办。。。

首先,我们可以想到,它可能是从满的里面删掉那个物品。

经过漫长的思考,得到了以下方程式:

意思是:如果可以删的话,达到j重量不选a[i],那我们就把选它的方案数给删去,

于是还需要处理以下全选的情况,

所以这题就没有了吧。。

坑点:

1、本题的输出非常玄学,得换连续输出两个数再换一次行,直接暴毙

2、蒟蒻看了半天没看出来要取模,最后发现是末位数字啊!!对10取模。

应该就是这样了。

代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn=;
int n,m;
int a[maxn];
int dp[maxn][];//µ½´ïj´óСʱµÄ·½°¸Êý int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
}
dp[][]=dp[][]=;
for(int i=;i<=n;i++)
{
for(int j=m;j>=a[i];j--)
{
dp[j][]+=dp[j-a[i]][];
dp[j][]%=;
}
}
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
if(j-a[i]>=)
dp[j][]=(dp[j][]-dp[j-a[i]][]+)%;
else
dp[j][]=dp[j][]%;
printf("%d",dp[j][]);
}
cout<<endl;
}
return ;
}

(完)

p4141(消失之物)的更多相关文章

  1. P4141 消失之物

    目录 链接 思路 代码 链接 P4141 消失之物 思路 f[N];//表示删掉物品后能出现容积为i的方案数 a[N];//单纯0-1背包的方案数asd 那么就先求出a[i]来,然后转移就是 if(j ...

  2. [BZOJ 2287/POJ openjudge1009/Luogu P4141] 消失之物

    题面: 传送门:http://poj.openjudge.cn/practice/1009/ Solution DP+DP 首先,我们可以很轻松地求出所有物品都要的情况下的选择方案数,一个简单的满背包 ...

  3. 洛谷P4141 消失之物——背包

    题目:https://www.luogu.org/problemnew/show/P4141 竟然是容斥:不选 i 物品只需减去选了 i 物品的方案: 范围原来是2*10^3而不是2*103啊... ...

  4. 洛谷P4141消失之物(背包经典题)——Chemist

    题目地址:https://www.luogu.org/problemnew/show/P4141 分析:这题当然可以直接暴力枚举去掉哪一个物品,然后每次暴力跑一遍背包,时间复杂度为O(m*n^2),显 ...

  5. [洛谷P4141] 消失之物「背包DP」

    暴力:暴力枚举少了哪个,下面套一个01背包 f[i][j]表示到了i物品,用了j容量的背包时的方案数,f[i][j]=f[i-1][j]+f[i-1][j-w[i]]O(n^3) 优化:不考虑消失的, ...

  6. 洛谷P4141 消失之物 题解 背包问题扩展

    题目链接:https://www.luogu.com.cn/problem/P4141 题目大意: 有 \(n\) 件物品,求第 \(i\) 件物品不能选的时候(\(i\) 从 \(1\) 到 \(n ...

  7. 洛谷P4141消失之物

    题目描述 ftiasch 有 N 个物品, 体积分别是 W1, W2, …, WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N – 1 物品装满容积为 x 的背包,有几种方法呢?” ...

  8. P4141 消失之物(背包)

    传送门 太珂怕了……为什么还有大佬用FFT和分治的…… 首先如果没有不取的限制的话就是一个裸的背包 然后我们考虑一下,正常的转移的话代码是下面这个样子的 ;i<=n;++i) for(int j ...

  9. Luogu P4141 消失之物 背包 分治

    题意:给出$n$个物品的体积和最大背包容量$m$,求去掉一个物品$i$后,装满体积为$w\in [1,m]$背包的方案数. 有 N 个物品, 体积分别是 W1, W2, …, WN. 由于她的疏忽, ...

  10. luogu p4141 消失之物(背包dp+容斥原理)

    题目传送门 昨天晚上学长讲了这题,说是什么线段树分治,然后觉得不可做,但那还不是正解,然后感觉好像好难的样子. 由于什么鬼畜的分治不会好打,然后想了一下$O(nm)$的做法,想了好长时间觉得这题好像很 ...

随机推荐

  1. 【POJ2001】Shortest Prefixes

    Shortest Prefixes Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 18724   Accepted: 810 ...

  2. asp.net core 腾讯验证码的接入

    asp.net core 腾讯验证码的接入 Intro 之前使用的验证码服务是用的极验验证,而且是比较旧的,好久之前接入的,而且验证码服务依赖 Session,有点不太灵活,后来发现腾讯也有验证码服务 ...

  3. eventfd(2) 结合 select(2) 源码分析

    eventfd(2) 结合 select(2) 源码分析 本文代码选自内核 4.17 eventfd(2) - 创建一个文件描述符用于事件通知. 使用 源码分析 参考 #include <sys ...

  4. redis安装及启动

    Redis 的安装及启动停止 下载 https://redis.io/download 软件copy至虚拟机中,常用的路径为/root/software 开始安装 安装gcc 目的是为了编译软件 yu ...

  5. Flask-wtforms类似django中的form组件

    一.安装 pip3 install wtforms 二.简单使用 1.创建flask对象 from flask import Flask, render_template, request, redi ...

  6. VS2017-Linux项目-使用第三方库如何配置

    1.虚拟机Ubuntu 16.04,安装第三方库,perftools::tcmalloc. 2.Win10下vs2017创建linux项目. 3.项目>>属性>>VC++ 目录 ...

  7. 03jmeter-json提取器

    要解决的问题:接口返回数据为json格式,需要获取返回结果中的某些值以便后续接口使用 注:可用json path tester(https://jsonpath.curiousconcept.com/ ...

  8. 3.Linux目录结构与文件管理

    1.Linux系统目录结构 Windows: 以多根的方式组织文件 C:\ D:\ E:\ F:\ Linux:以单根的方式组织文件 / 2.文件定义 比如: /etc/hostname,整个文件中包 ...

  9. 破解Android设备无法联调的谜题

    这篇文章要感谢来自知乎的小伙伴:子非鱼,他最近被一件事情困惑,那就是:Android手机无法联调了.在解决完他的疑问后,突然意识到,其实自己在前一段时间也曾遇到同样的问题,最后居然还怀疑是电脑和手机不 ...

  10. 百万年薪python之路 -- 并发编程之 多线程 二

    1. 死锁现象与递归锁 进程也有死锁与递归锁,进程的死锁和递归锁与线程的死锁递归锁同理. 所谓死锁: 是指两个或两个以上的进程或线程在执行过程中,因为争夺资源而造成的一种互相等待的现象,在无外力的作用 ...