K 折验证
为了在调节网络参数(比如训练的轮数)的同时对网络进行评估,你可以将数据划分为训练集和验证集。但由于数据点很少,验证集会非常小(比如大约100 个样本)。因此,验证分数可能会有很大波动,这取决于你所选择的验证集和训练集。也就是说,验证集的划分方式可能会造成验证分数上有很大的方差,这样就无法对模型进行可靠的评估。
在这种情况下,最佳做法是使用 K 折交叉验证。这种方法将可用数据划分为 K个分区(K 通常取 4 或 5),实例化 K 个相同的模型,将每个模型在 K-1 个分区上训练,并在剩下的一个分区上进行评估。模型的验证分数等于 K 个验证分数的平均值。 
一个可能的程序示例:
k = 4 #划分成k块
num_validation_samples = len(data) // k
np.random.shuffle(data)
validation_scores = []
for fold in range(k):
validation_data = data[num_validation_samples * fold : num_validation_samples * (fold + 1)]
training_data = data[:num_validation_samples * fold] + data[num_validation_samples * (fold + 1):]
model = get_model()
model.train(training_data)
validation_score = model.evaluate(validation_data)
validation_scores.append(validation_score)
validation_score = np.average(validation_scores)
model = get_model()
model.train(data)
test_score = model.evaluate(test_data)
K 折验证的更多相关文章
- sklearn的K折交叉验证函数KFold使用
K折交叉验证时使用: KFold(n_split, shuffle, random_state) 参数:n_split:要划分的折数 shuffle: 每次都进行shuffle,测试集中折数的总和就是 ...
- 机器学习--K折交叉验证和非负矩阵分解
1.交叉验证 交叉验证(Cross validation),交叉验证用于防止模型过于复杂而引起的过拟合.有时亦称循环估计, 是一种统计学上将数据样本切割成较小子集的实用方法. 于是可以先在一个子集上做 ...
- cross_val_score 交叉验证与 K折交叉验证,嗯都是抄来的,自己作个参考
因为sklearn cross_val_score 交叉验证,这个函数没有洗牌功能,添加K 折交叉验证,可以用来选择模型,也可以用来选择特征 sklearn.model_selection.cross ...
- 小白学习之pytorch框架(7)之实战Kaggle比赛:房价预测(K折交叉验证、*args、**kwargs)
本篇博客代码来自于<动手学深度学习>pytorch版,也是代码较多,解释较少的一篇.不过好多方法在我以前的博客都有提,所以这次没提.还有一个原因是,这篇博客的代码,只要好好看看肯定能看懂( ...
- 小白学习之pytorch框架(6)-模型选择(K折交叉验证)、欠拟合、过拟合(权重衰减法(=L2范数正则化)、丢弃法)、正向传播、反向传播
下面要说的基本都是<动手学深度学习>这本花书上的内容,图也采用的书上的 首先说的是训练误差(模型在训练数据集上表现出的误差)和泛化误差(模型在任意一个测试数据集样本上表现出的误差的期望) ...
- k折交叉验证
原理:将原始数据集划分为k个子集,将其中一个子集作为验证集,其余k-1个子集作为训练集,如此训练和验证一轮称为一次交叉验证.交叉验证重复k次,每个子集都做一次验证集,得到k个模型,加权平均k个模型的结 ...
- 偏差(bias)和方差(variance)及其与K折交叉验证的关系
先上图: 泛化误差可表示为偏差.方差和噪声之和 偏差(bias):学习算法的期望预测与真实结果(train set)的偏离程度(平均预测值与真实值之差),刻画算法本身的拟合能力: 方差(varianc ...
- K折-交叉验证
k-折交叉验证(k-fold crossValidation):在机器学习中,将数据集A分为训练集(training set)B和测试集(test set)C,在样本量不充足的情况下,为了充分利用数据 ...
- KFold,StratifiedKFold k折交叉切分
python风控评分卡建模和风控常识(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005214003&am ...
随机推荐
- adb查看Android app包名
1. 确保电脑已经安装了adb.exe文件 2. 使用USB连接你的手机到电脑上,输入下图所示的命令后按下回车键:adb devices 3. 使用手机打开某个应用程序 4.回到命令号窗口,输入代码如 ...
- CentOS 7 Cobbler 自动化安装系统
在上一篇Cobbler 安装中,配置好了Cobbler,下面来配置自动化安装 配置cobbler-DHCP # 修改settings中参数,由cobbler控制dhcp [root@cobbler ~ ...
- split分割(拆分)文件
split分割(拆分)文件 需求:指定文件大小拆分文件 # ll -h test/ |grep vmcore -rw-r--r-- 1 root root 12G 12月 7 00:20 vmco ...
- python_迭代器和生成器、字节串、字节数组
迭代器 iterator 和 生成器 generator 什么是迭代器:迭代器就是获取迭代对象中元素的工具,迭代器是由可迭代对象生成的 1.迭代器是指用iter(可迭代对象)函数返回的对象(实例) ...
- 一个缓存使用案例:Spring Cache VS Caffeine 原生 API
最近在学习本地缓存发现,在 Spring 技术栈的开发中,既可以使用 Spring Cache 的注解形式操作缓存,也可用各种缓存方案的原生 API.那么是否 Spring 官方提供的就是最合适的方案 ...
- 使用react-breadcrumbs-dynamic
这是完全独立于路由器的解决方案,你可以将其与任何版本的React Router(2或3或4)或任何其他用于React的路由库一起使用,或者完全不进行路由.您只需要指定面包屑项目及其道具的组件.然而道具 ...
- Android 通知的基本用法
一.概念 通知(Notification)是 Android 系统中比较有特色的一个功能,当某个应用程序希望像用户发送一些提示消息的时候,然而此时应用程序并不在前台运行,此时就可以借助通知来实现.发出 ...
- 吴裕雄--天生自然python学习笔记:python通过“任务计划程序”实现定时自动下载或更新运行 PM2.5 数据抓取程序数据
在 Windows 任务计划程序中,设置每隔 30 分钟自动抓取 PM2.5 数据,井保存 在 SQLite 数据库中 . import sqlite3,ast,requests,os from bs ...
- luogu P3984 高兴的津津
题目描述 津津上高中了.她在自己的妈妈的魔鬼训练下,成为了一个神犇,每次参加一次OI比赛必拿Au虐全场.每次她拿到一个Au后就很高兴.假设津津不会因为其它事高兴,并且她的高兴会持续T天(包包含获奖当天 ...
- MongoDB第一天(MongoDB的简介和安装)
MongoDB 简介 什么是 MongoDB MongoDB 是一个基于分布式文件存储的数据库.由 C++语言编写.在为 WEB 应用提供可扩展的高性能数据存储解决方案. MongoDB 是一个介于关 ...