nyoj 214-单调递增子序列(二) (演算法,PS:普通的动态规划要超时)
214-单调递增子序列(二)
内存限制:64MB
时间限制:1000ms
Special Judge: No
accepted:11
submit:35
题目描述:
给定一整型数列{a1,a2...,an}(0<n<=100000),找出单调递增最长子序列,并求出其长度。
如:1 9 10 5 11 2 13的最长单调递增子序列是1 9 10 11 13,长度为5。
输入描述:
有多组测试数据(<=7)
每组测试数据的第一行是一个整数n表示序列中共有n个整数,随后的下一行里有n个整数,表示数列中的所有元素.每个整形数中间用空格间隔开(0<n<=100000)。
数据以EOF结束 。
输入数据保证合法(全为int型整数)!
输出描述:
对于每组测试数据输出整形数列的最长递增子序列的长度,每个输出占一行。
样例输入:
7
1 9 10 5 11 2 13
2
2 -1
样例输出:
5
1 分析:
1、如果给的串本身是升序的,就直接加入进来temp[]串中
2、否则的话我们要找到第一个大于等于该值的位置,并改变该位置的值(使最终组成的temp[]串ASCⅡ码之和最小) 核心代码:
while(m --)
{
scanf("%d", &v);
if(temp[cnt] < v)
{
temp[++cnt] = v;
continue;
}
for(int i = ; i <= cnt; ++ i)
{
if(temp[i] >= v)
{
temp[i] = v;
break;
}
}
}
C/C++代码实现(AC):
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <stack>
#include <map>
#include <queue>
#include <set> using namespace std;
const int MAXN = ; int main()
{ int t, A[MAXN], temp[MAXN], cnt;
while(~scanf("%d", &t))
{
cnt = ;
memset(A, , sizeof(A));
memset(temp, , sizeof(temp));
scanf("%d", &A[]);
temp[cnt] = A[];
for(int i = ; i < t; ++ i)
{
scanf("%d", &A[i]);
if(temp[cnt] < A[i])
{
temp[++cnt] = A[i];
continue;
}
for(int j = ; j <= cnt; ++ j)
if(A[i] <= temp[j])
{
temp[j] = A[i];
break;
} }
printf("%d\n", cnt + );
}
return ;
}
C/C++代码(TLE)<动态规划>:
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <stack>
#include <map>
#include <queue>
#include <set> using namespace std;
const int MAXN = ; int main()
{ int t, A[MAXN], dp[MAXN], cnt;
while(~scanf("%d", &t))
{
cnt = ;
memset(A, , sizeof(A));
memset(dp, , sizeof(dp));
for(int i = ; i < t; ++ i)
{
scanf("%d", &A[i]);
dp[i] = ;
for(int j = ; j < i; ++ j)
if(A[i] > A[j])
dp[i] = max(dp[i], dp[j] + );
cnt = max(cnt, dp[i]);
}
printf("%d\n", cnt);
}
return ;
}
nyoj 214-单调递增子序列(二) (演算法,PS:普通的动态规划要超时)的更多相关文章
- nyoj 214 单调递增子序列(二)
单调递增子序列(二) 时间限制:1000 ms | 内存限制:65535 KB 难度:4 描述 ,a2...,an}(0<n<=100000),找出单调递增最长子序列,并求出其长度. ...
- nyoj 214——单调递增子序列(二)——————【二分搜索加dp】
单调递增子序列(二) 时间限制:1000 ms | 内存限制:65535 KB 难度:4 描述 给定一整型数列{a1,a2...,an}(0<n<=100000),找出单调递增最长 ...
- nyoj 214 单调递增子序列(二) 【另类dp】
单调递增子序列(二) 时间限制:1000 ms | 内存限制:65535 KB 难度:4 描写叙述 ,a2...,an}(0<n<=100000),找出单调递增最长子序列.并求出其长度 ...
- nyist oj 214 单调递增子序列(二) (动态规划经典)
单调递增子序列(二) 时间限制:1000 ms | 内存限制:65535 KB 难度:4 描写叙述 ,a2...,an}(0<n<=100000).找出单调递增最长子序列,并求出其长度 ...
- nyoj 单调递增子序列(二)
单调递增子序列(二) 时间限制:1000 ms | 内存限制:65535 KB 难度:4 描述 给定一整型数列{a1,a2...,an}(0<n<=100000),找出单调递增最长 ...
- ny214 单调递增子序列(二) 动态规划
单调递增子序列(二) 时间限制:1000 ms | 内存限制:65535 KB 难度:4 描述 给定一整型数列{a1,a2...,an}(0<n<=100000),找出单调递增最长子序 ...
- nyoj_214_单调递增子序列(二)_201403182131
单调递增子序列(二) 时间限制:1000 ms | 内存限制:65535 KB 难度:4 描述 给定一整型数列{a1,a2...,an}(0<n<=100000),找出单调递增最长 ...
- NYOJ-214 单调递增子序列(二) AC 分类: NYOJ 2014-01-31 08:06 233人阅读 评论(0) 收藏
#include<stdio.h> #include<string.h> int len, n, i, j; int d[100005], a[100005]; int bin ...
- NYOJ-214 单调递增子序列(二) TLE 分类: NYOJ 2014-01-28 22:57 171人阅读 评论(0) 收藏
#include<stdio.h> #include<stdlib.h> #define max(x,y) x>y?x:y #define MAXX 100005 int ...
随机推荐
- Ubuntu 设置默认以Root用户身份登录
系统 :Linux ubuntu 4.4.0-31-generic #50-Ubuntu SMP Wed Jul 13 00:07:12 UTC 2016 x86_64 x86_64 x86_64 G ...
- Python斐波那契数列
今天偶然看到这个题目,闲着没事练一下手 if __name__ == '__main__': """ 斐波那契数列(Fibonacci sequence), 又称黄金分割 ...
- Cocos Creator 中 _worldMatrix 到底是什么(中)
Cocos Creator 中 _worldMatrix 到底是什么(中) 1. 中篇摘要 在上篇中主要做了三件事 简单表述了矩阵的基本知识,以及需要涉及到的三角函数知识 推导了图形变换中 位移 .旋 ...
- python2与3实际中遇到的区别
1.type(1/2) python2是向下取整,0,为int:python3是正常除法,0.5,为float 2.
- 实现基于netty的web框架,了解一下
上一篇写了,基于netty实现的rpc的微框架,其中详细介绍netty的原理及组件,这篇就不过多介绍 这篇实现基于netty的web框架,你说netty强不强,文中有不对的地方,欢迎大牛指正 先普及几 ...
- Java TCP协议字节处理工具类
1.使用 tcp 协议 读取 输入流的固定长度的字节数 public static byte[] getTcpSpecificBytes(BufferedInputStream bis,int len ...
- <编译原理 - 函数绘图语言解释器(1)词法分析器 - python>
<编译原理 - 函数绘图语言解释器(1)词法分析器 - python> 背景 编译原理上机实现一个对函数绘图语言的解释器 - 用除C外的不同种语言实现 解释器分为三个实现块: 词法分析器: ...
- OptimalSolution(3)--链表问题(2)进阶
一.环形单链表的约瑟夫问题 二.判断一个链表是否为回文结构 三.将单向链表按某只划分成左边小.中间相等.右边大的形式 四.复制含有随机指针节点的链表 五.两个单链表相交的一系列问题 六.将单链表的每K ...
- 框架搭建与EF常用基类实现
前两篇简单谈了一些.Net Core的优势以及机构设计的一些思路,这一篇开始,我们将从零开始搭建架构,底层我们将采用EF来访问数据库,所以这篇我们将贴一下EF常用操作的基类. 简单介绍下一些类库将要实 ...
- PHP获取当前时间
PHP获取系统当前时间,有date()可以使用. 但date()当前系统时间是格林威治时间,比我们所在的时区晚了整整8个小时.以前处理这个问题时,只是简单的把获取的当前系统的时间戳加上8个小时的时间, ...