Spark 系列(十六)—— Spark Streaming 整合 Kafka
一、版本说明
Spark 针对 Kafka 的不同版本,提供了两套整合方案:spark-streaming-kafka-0-8 和 spark-streaming-kafka-0-10,其主要区别如下:
| spark-streaming-kafka-0-8 | spark-streaming-kafka-0-10 | |
|---|---|---|
| Kafka 版本 | 0.8.2.1 or higher | 0.10.0 or higher |
| AP 状态 | Deprecated 从 Spark 2.3.0 版本开始,Kafka 0.8 支持已被弃用 |
Stable(稳定版) |
| 语言支持 | Scala, Java, Python | Scala, Java |
| Receiver DStream | Yes | No |
| Direct DStream | Yes | Yes |
| SSL / TLS Support | No | Yes |
| Offset Commit API(偏移量提交) | No | Yes |
| Dynamic Topic Subscription (动态主题订阅) |
No | Yes |
本文使用的 Kafka 版本为 kafka_2.12-2.2.0,故采用第二种方式进行整合。
二、项目依赖
项目采用 Maven 进行构建,主要依赖如下:
<properties>
<scala.version>2.12</scala.version>
</properties>
<dependencies>
<!-- Spark Streaming-->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_${scala.version}</artifactId>
<version>${spark.version}</version>
</dependency>
<!-- Spark Streaming 整合 Kafka 依赖-->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka-0-10_${scala.version}</artifactId>
<version>2.4.3</version>
</dependency>
</dependencies>
完整源码见本仓库:spark-streaming-kafka
三、整合Kafka
通过调用 KafkaUtils 对象的 createDirectStream 方法来创建输入流,完整代码如下:
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.SparkConf
import org.apache.spark.streaming.kafka010.ConsumerStrategies.Subscribe
import org.apache.spark.streaming.kafka010.LocationStrategies.PreferConsistent
import org.apache.spark.streaming.kafka010._
import org.apache.spark.streaming.{Seconds, StreamingContext}
/**
* spark streaming 整合 kafka
*/
object KafkaDirectStream {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().setAppName("KafkaDirectStream").setMaster("local[2]")
val streamingContext = new StreamingContext(sparkConf, Seconds(5))
val kafkaParams = Map[String, Object](
/*
* 指定 broker 的地址清单,清单里不需要包含所有的 broker 地址,生产者会从给定的 broker 里查找其他 broker 的信息。
* 不过建议至少提供两个 broker 的信息作为容错。
*/
"bootstrap.servers" -> "hadoop001:9092",
/*键的序列化器*/
"key.deserializer" -> classOf[StringDeserializer],
/*值的序列化器*/
"value.deserializer" -> classOf[StringDeserializer],
/*消费者所在分组的 ID*/
"group.id" -> "spark-streaming-group",
/*
* 该属性指定了消费者在读取一个没有偏移量的分区或者偏移量无效的情况下该作何处理:
* latest: 在偏移量无效的情况下,消费者将从最新的记录开始读取数据(在消费者启动之后生成的记录)
* earliest: 在偏移量无效的情况下,消费者将从起始位置读取分区的记录
*/
"auto.offset.reset" -> "latest",
/*是否自动提交*/
"enable.auto.commit" -> (true: java.lang.Boolean)
)
/*可以同时订阅多个主题*/
val topics = Array("spark-streaming-topic")
val stream = KafkaUtils.createDirectStream[String, String](
streamingContext,
/*位置策略*/
PreferConsistent,
/*订阅主题*/
Subscribe[String, String](topics, kafkaParams)
)
/*打印输入流*/
stream.map(record => (record.key, record.value)).print()
streamingContext.start()
streamingContext.awaitTermination()
}
}
3.1 ConsumerRecord
这里获得的输入流中每一个 Record 实际上是 ConsumerRecord<K, V> 的实例,其包含了 Record 的所有可用信息,源码如下:
public class ConsumerRecord<K, V> {
public static final long NO_TIMESTAMP = RecordBatch.NO_TIMESTAMP;
public static final int NULL_SIZE = -1;
public static final int NULL_CHECKSUM = -1;
/*主题名称*/
private final String topic;
/*分区编号*/
private final int partition;
/*偏移量*/
private final long offset;
/*时间戳*/
private final long timestamp;
/*时间戳代表的含义*/
private final TimestampType timestampType;
/*键序列化器*/
private final int serializedKeySize;
/*值序列化器*/
private final int serializedValueSize;
/*值序列化器*/
private final Headers headers;
/*键*/
private final K key;
/*值*/
private final V value;
.....
}
3.2 生产者属性
在示例代码中 kafkaParams 封装了 Kafka 消费者的属性,这些属性和 Spark Streaming 无关,是 Kafka 原生 API 中就有定义的。其中服务器地址、键序列化器和值序列化器是必选的,其他配置是可选的。其余可选的配置项如下:
1. fetch.min.byte
消费者从服务器获取记录的最小字节数。如果可用的数据量小于设置值,broker 会等待有足够的可用数据时才会把它返回给消费者。
2. fetch.max.wait.ms
broker 返回给消费者数据的等待时间。
3. max.partition.fetch.bytes
分区返回给消费者的最大字节数。
4. session.timeout.ms
消费者在被认为死亡之前可以与服务器断开连接的时间。
5. auto.offset.reset
该属性指定了消费者在读取一个没有偏移量的分区或者偏移量无效的情况下该作何处理:
- latest(默认值) :在偏移量无效的情况下,消费者将从其启动之后生成的最新的记录开始读取数据;
- earliest :在偏移量无效的情况下,消费者将从起始位置读取分区的记录。
6. enable.auto.commit
是否自动提交偏移量,默认值是 true,为了避免出现重复数据和数据丢失,可以把它设置为 false。
7. client.id
客户端 id,服务器用来识别消息的来源。
8. max.poll.records
单次调用 poll() 方法能够返回的记录数量。
9. receive.buffer.bytes 和 send.buffer.byte
这两个参数分别指定 TCP socket 接收和发送数据包缓冲区的大小,-1 代表使用操作系统的默认值。
3.3 位置策略
Spark Streaming 中提供了如下三种位置策略,用于指定 Kafka 主题分区与 Spark 执行程序 Executors 之间的分配关系:
PreferConsistent : 它将在所有的 Executors 上均匀分配分区;
- PreferBrokers : 当 Spark 的 Executor 与 Kafka Broker 在同一机器上时可以选择该选项,它优先将该 Broker 上的首领分区分配给该机器上的 Executor;
PreferFixed : 可以指定主题分区与特定主机的映射关系,显示地将分区分配到特定的主机,其构造器如下:
@Experimental
def PreferFixed(hostMap: collection.Map[TopicPartition, String]): LocationStrategy =
new PreferFixed(new ju.HashMap[TopicPartition, String](hostMap.asJava))
@Experimental
def PreferFixed(hostMap: ju.Map[TopicPartition, String]): LocationStrategy =
new PreferFixed(hostMap)
3.4 订阅方式
Spark Streaming 提供了两种主题订阅方式,分别为 Subscribe 和 SubscribePattern。后者可以使用正则匹配订阅主题的名称。其构造器分别如下:
/**
* @param 需要订阅的主题的集合
* @param Kafka 消费者参数
* @param offsets(可选): 在初始启动时开始的偏移量。如果没有,则将使用保存的偏移量或 auto.offset.reset 属性的值
*/
def Subscribe[K, V](
topics: ju.Collection[jl.String],
kafkaParams: ju.Map[String, Object],
offsets: ju.Map[TopicPartition, jl.Long]): ConsumerStrategy[K, V] = { ... }
/**
* @param 需要订阅的正则
* @param Kafka 消费者参数
* @param offsets(可选): 在初始启动时开始的偏移量。如果没有,则将使用保存的偏移量或 auto.offset.reset 属性的值
*/
def SubscribePattern[K, V](
pattern: ju.regex.Pattern,
kafkaParams: collection.Map[String, Object],
offsets: collection.Map[TopicPartition, Long]): ConsumerStrategy[K, V] = { ... }
在示例代码中,我们实际上并没有指定第三个参数 offsets,所以程序默认采用的是配置的 auto.offset.reset 属性的值 latest,即在偏移量无效的情况下,消费者将从其启动之后生成的最新的记录开始读取数据。
3.5 提交偏移量
在示例代码中,我们将 enable.auto.commit 设置为 true,代表自动提交。在某些情况下,你可能需要更高的可靠性,如在业务完全处理完成后再提交偏移量,这时候可以使用手动提交。想要进行手动提交,需要调用 Kafka 原生的 API :
commitSync: 用于异步提交;commitAsync:用于同步提交。
具体提交方式可以参见:Kafka 消费者详解
四、启动测试
4.1 创建主题
1. 启动Kakfa
Kafka 的运行依赖于 zookeeper,需要预先启动,可以启动 Kafka 内置的 zookeeper,也可以启动自己安装的:
# zookeeper启动命令
bin/zkServer.sh start
# 内置zookeeper启动命令
bin/zookeeper-server-start.sh config/zookeeper.properties
启动单节点 kafka 用于测试:
# bin/kafka-server-start.sh config/server.properties
2. 创建topic
# 创建用于测试主题
bin/kafka-topics.sh --create \
--bootstrap-server hadoop001:9092 \
--replication-factor 1 \
--partitions 1 \
--topic spark-streaming-topic
# 查看所有主题
bin/kafka-topics.sh --list --bootstrap-server hadoop001:9092
3. 创建生产者
这里创建一个 Kafka 生产者,用于发送测试数据:
bin/kafka-console-producer.sh --broker-list hadoop001:9092 --topic spark-streaming-topic
4.2 本地模式测试
这里我直接使用本地模式启动 Spark Streaming 程序。启动后使用生产者发送数据,从控制台查看结果。
从控制台输出中可以看到数据流已经被成功接收,由于采用 kafka-console-producer.sh 发送的数据默认是没有 key 的,所以 key 值为 null。同时从输出中也可以看到在程序中指定的 groupId 和程序自动分配的 clientId。
参考资料
- https://spark.apache.org/docs/latest/streaming-kafka-0-10-integration.html
更多大数据系列文章可以参见 GitHub 开源项目: 大数据入门指南
Spark 系列(十六)—— Spark Streaming 整合 Kafka的更多相关文章
- Spark学习之路(十六)—— Spark Streaming 整合 Kafka
一.版本说明 Spark针对Kafka的不同版本,提供了两套整合方案:spark-streaming-kafka-0-8和spark-streaming-kafka-0-10,其主要区别如下: s ...
- S3C2416裸机开发系列十六_sd卡驱动实现
S3C2416裸机开发系列十六 sd卡驱动实现 象棋小子 1048272975 SD卡(Secure Digital Memory Card)具有体积小.容量大.传输数据快.可插拔.安全性好等长 ...
- spark streaming 整合 kafka(一)
转载:https://www.iteblog.com/archives/1322.html Apache Kafka是一个分布式的消息发布-订阅系统.可以说,任何实时大数据处理工具缺少与Kafka整合 ...
- Spark之 Spark Streaming整合kafka(并演示reduceByKeyAndWindow、updateStateByKey算子使用)
Kafka0.8版本基于receiver接受器去接受kafka topic中的数据(并演示reduceByKeyAndWindow的使用) 依赖 <dependency> <grou ...
- spark 源码分析之十六 -- Spark内存存储剖析
上篇spark 源码分析之十五 -- Spark内存管理剖析 讲解了Spark的内存管理机制,主要是MemoryManager的内容.跟Spark的内存管理机制最密切相关的就是内存存储,本篇文章主要介 ...
- spark系列-7、spark调优
官网说明:http://spark.apache.org/docs/2.1.1/tuning.html#data-serialization 一.JVM调优 1.1.Java虚拟机垃圾回收调优的背景 ...
- spark系列-2、Spark 核心数据结构:弹性分布式数据集 RDD
一.RDD(弹性分布式数据集) RDD 是 Spark 最核心的数据结构,RDD(Resilient Distributed Dataset)全称为弹性分布式数据集,是 Spark 对数据的核心抽象, ...
- 学习ASP.NET Core Razor 编程系列十六——排序
学习ASP.NET Core Razor 编程系列目录 学习ASP.NET Core Razor 编程系列一 学习ASP.NET Core Razor 编程系列二——添加一个实体 学习ASP.NET ...
- 【spark系列3】spark开发简单指南
分布式数据集创建之textFile 文本文件的RDDs能够通过SparkContext的textFile方法创建,该方法接受文件的URI地址(或者机器上的文件本地路径,或者一个hdfs ...
随机推荐
- 2019-2020年值得关注的9个AR发展趋势
作者Andrew Makarov,由计算机视觉life编辑:乔媛媛编译 更好的阅读体验请看首发原文链接 2019-2020年值得关注的9个AR发展趋势 增强现实技术在2019年实现了创纪录的发展.微软 ...
- [Microsoft][ODBC Driver 11 for SQL Server][SQL Server]列名 'user1' 无效
唉,还是自己对php执行sql语句运用不熟练.... 我的错误代码是这样的,(解决办法在最后) $re=sqlsrv_query($conn, "select * from visitor ...
- POJ2533&&SP1799 The Bottom of a Graph(tarjan+缩点)
POJ2553 SP1799 我们知道单独一个强连通分量中的所有点是满足题目要求的 但如果它连出去到了其他点那里,要么成为新的强连通分量,要么失去原有的符合题目要求的性质 所以只需tarjan缩点求出 ...
- 和朱晔一起复习Java并发(五):并发容器和同步器
本节我们先会来复习一下java.util.concurrent下面的一些并发容器,然后再会来简单看一下各种同步器. ConcurrentHashMap和ConcurrentSkipListMap的性能 ...
- 个人永久性免费-Excel催化剂功能第50波-批量打印、导出PDF、双面打印功能
在倡导无纸化办公的今天,是否打印是一个碍眼的功能呢,某些时候的确是,但对于数据的留存,在现在鼓吹区块链技术的今天,仍然不失它的核心价值,数据报表.单据打印出来留存,仍然是一种不可或缺的数据存档和防篡改 ...
- vue教程(三)-slot\keep-alive的使用
一.slot其实就是填坑操作,父组件传递dom结构,是vue提供的一种内置组件(组件知识请查看上篇博客内容) 写法:<slot></slot> 例子: var child = ...
- List集合源码解读
一:总述: 主要讲解3个集合 1.ArrayList: 底层是数组,线程不安全: 2.LinkedList: 底层是链表,线程不安全: 3.Vector 底层数据结构是数组.线程安全: 二:Ar ...
- linux初学者-DNS集群篇
linux初学者-DNS集群篇 DNS服务器一般在使用时,为了缓解服务器的压力,多使用一个主DNS服务器,多个副DNS服务器,这些DNS服务器就组成了一个DNS集群. 在DNS主服务器配置好后,需要另 ...
- sort+结构体+简单数学+暴力-例题
A-前m大的数 还记得Gardon给小希布置的那个作业么?(上次比赛的1005)其实小希已经找回了原来的那张数表,现在她想确认一下她的答案是否正确,但是整个的答案是很庞大的表,小希只想让你把答案中最大 ...
- python3 读取文件-2
1.脚本 from sys import argv script,filename = argv#以读的模式打开txt文件txt = open(filename,'r+')print ("t ...