perspective transform透视矩阵快速求法+矩形矫正
算了半天一直在思考如何快速把矩阵算出来,网上基本都是在说边长为1的正方形的变换方式=。= 不怎么用得上…… 公式推导推半天,计算还麻烦。。。。
++++++++++++++++++++++++++++++
对于透视变换:

其中我们在使用的时候最重要的是算出系数…………………… 这里我们按照i=1计算
找了半天找到了这一篇论文:http://www.ixueshu.com/document/027c165d22e18077318947a18e7f9386.html
里面提到我们可以将公式
改写成
的模式。
那么根据矩形矫正前后的8个顶点可以得到公式:

那么只要计算中间8x8矩阵的逆,乘上变换后的uv矩阵,就可以求出所有待定系数。其中点的检测需要用到hough算法,点和点之间的对应我做了个交互,不然太麻烦了。。。。
矩阵求逆代码:其中N为8
#include <iostream>
using namespace std;
#define N 8 //测试矩阵维数定义 //按第一行展开计算|A|
double getA(double arcs[N][N], int n)
{
if (n == )
{
return arcs[][];
}
double ans = ;
double temp[N][N] = { 0.0 };
int i, j, k;
for (i = ; i<n; i++)
{
for (j = ; j<n - ; j++)
{
for (k = ; k<n - ; k++)
{
temp[j][k] = arcs[j + ][(k >= i) ? k + : k]; }
}
double t = getA(temp, n - );
if (i % == )
{
ans += arcs[][i] * t;
}
else
{
ans -= arcs[][i] * t;
}
}
return ans;
} //计算每一行每一列的每个元素所对应的余子式,组成A*
void getAStart(double arcs[N][N], int n, double ans[N][N])
{
if (n == )
{
ans[][] = ;
return;
}
int i, j, k, t;
double temp[N][N];
for (i = ; i<n; i++)
{
for (j = ; j<n; j++)
{
for (k = ; k<n - ; k++)
{
for (t = ; t<n - ; t++)
{
temp[k][t] = arcs[k >= i ? k + : k][t >= j ? t + : t];
}
} ans[j][i] = getA(temp, n - ); //此处顺便进行了转置
if ((i + j) % == )
{
ans[j][i] = -ans[j][i];
}
}
}
} //得到给定矩阵src的逆矩阵保存到des中。
bool GetMatrixInverse(double src[N][N], int n, double des[N][N])
{
double flag = getA(src, n);
double t[N][N];
if ( == flag)
{
cout << "原矩阵行列式为0,无法求逆。请重新运行" << endl;
return false;//如果算出矩阵的行列式为0,则不往下进行
}
else
{
getAStart(src, n, t);
for (int i = ; i<n; i++)
{
for (int j = ; j<n; j++)
{
des[i][j] = t[i][j] / flag;
} }
} return true;
}
主函数内代码:(仅部分)
vector<pair<int, int>> P ,newPoint; //P 变换后标准A4的点 newPoint 变换前的点 计算时候计算变换后变换到变换前 //省略中间数值插入和输出图片构成 P.push_back(make_pair(, ));
P.push_back(make_pair((int)len1, ));
P.push_back(make_pair((int)len1, (int)len2));
P.push_back(make_pair(, (int)len2)); int uv[] = { newPoint[].first, newPoint[].second,
newPoint[].first, newPoint[].second,
newPoint[].first, newPoint[].second,
newPoint[].first, newPoint[].second }; double src[][] =
{ { P[].first, P[].second, , , , , -newPoint[].first*P[].first, -newPoint[].first*P[].second },
{ , , , P[].first, P[].second, , -newPoint[].second*P[].first, -newPoint[].second*P[].second }, { P[].first, P[].second, , , , , -newPoint[].first*P[].first, -newPoint[].first*P[].second },
{ , , , P[].first, P[].second, , -newPoint[].second*P[].first, -newPoint[].second*P[].second }, { P[].first, P[].second, , , , , -newPoint[].first*P[].first, -newPoint[].first*P[].second },
{ , , , P[].first, P[].second, , -newPoint[].second*P[].first, -newPoint[].second*P[].second }, { P[].first, P[].second, , , , , -newPoint[].first*P[].first, -newPoint[].first*P[].second },
{ , , , P[].first, P[].second, , -newPoint[].second*P[].first, -newPoint[].second*P[].second } }; double matrix_after[N][N]{};
bool flag = GetMatrixInverse(src, N, matrix_after);
if (false == flag) {
cout << "求不出系数" << endl;
return;
} cout << "逆矩阵:" << endl; for (int i = ; i<; i++)
{
for (int j = ; j<; j++)
{
cout << matrix_after[i][j] << " ";
//cout << *(*(matrix_after+i)+j)<<" ";
}
cout << endl;
} double xs[];
for (int i = ; i < ; i++) {
double sum = ;
for (int t = ; t < ; t++) {
sum += matrix_after[i][t] * uv[t];
}
xs[i] = sum;
}
//矩形矫正 没有用双线性插值
cimg_forXY(outputimg, x, y) {
double px = xs[] * x + xs[] * y + xs[];
double py = xs[] * x + xs[] * y + xs[];
double p = xs[] * x + xs[] * y + ; int u = px / p;
int v = py / p; outputimg(x, y, ) = paint(u, v, );
outputimg(x, y, ) = paint(u, v, );
outputimg(x, y, ) = paint(u, v, );
}
以上~
基本实验了一下:

结果:

还可以吧。。。
perspective transform透视矩阵快速求法+矩形矫正的更多相关文章
- 【CImg】简单的畸变矩形矫正
三个角点确定一个平面,畸变的平面可以看成是不同基底下同一图像的表示 ============================我是分割线============================= 1. ...
- CSS3打造3D效果——perspective transform的深度剖析
声明:此篇博文虽是自己手写,但大量资源取自 张鑫旭 的博文.想看更详细 更专业的剖析请看张鑫旭的博文. 昨天对css3的transform做了初步的分析和认识,突然看到perspective属性,调了 ...
- hdu3306 Another kind of Fibonacci【矩阵快速幂】
转载请注明出处:http://www.cnblogs.com/KirisameMarisa/p/4187670.html 题目链接:http://acm.hdu.edu.cn/showproblem. ...
- [技术]浅谈OI中矩阵快速幂的用法
前言 矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中,矩阵的运算是数值分析领域的重要问题. 基本介绍 (该部分为入门向,非入门选手可以跳过) 由 m行n列元素排列成的矩形阵列.矩阵里的 ...
- HDU 6185 Covering 矩阵快速幂
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6185 题意:用 1 * 2 的小长方形完全覆盖 4 * n的矩形有多少方案. 解法:小范围是一个经典题 ...
- hdu4549 M斐波那契数列 矩阵快速幂+快速幂
M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a, b, n,你能求出F[n]的 ...
- 五校联考R1 Day1T3 平面图planar(递推 矩阵快速幂)
题目链接 我们可以把棱柱拆成有\(n\)条高的矩形,尝试递推. 在计算的过程中,第\(i\)列(\(i\neq n\))只与\(i-1\)列有关,称\(i-1\)列的上面/下面为左上/左下,第\(i\ ...
- BZOJ2476: 战场的数目(矩阵快速幂)
题意 题目链接 Sol 神仙题Orzzz 考虑两边是否有\(1\) 设\(f[i]\)表示周长为\(2i\)的方案数 第一种情况:左侧或右侧有一个1,那么把这个1删去,对应的方案数为\(f[i - 1 ...
- HDU - 6185 Covering(暴搜+递推+矩阵快速幂)
Covering Bob's school has a big playground, boys and girls always play games here after school. To p ...
随机推荐
- .NET开发框架(三)-高可用服务器端设计
我们对框架功能作了简述,演示视频请点击 这里查看 ,若需要查看更多此框架的技术文章,请关注.NET框架学苑公众号! 本章节,我们专门讲解一下,如何在Window服务器下,设计高可用的框架. 我们的框架 ...
- spring cloud 系列第7篇 —— sleuth+zipkin 服务链路追踪 (F版本)
源码Gitub地址:https://github.com/heibaiying/spring-samples-for-all 一.简介 在微服务架构中,几乎每一个前端的请求都会经过多个服务单元协调来提 ...
- APPCAN 通信(appcan.ajax)
引用JS: function callWebService(serviceName, params, methodType, offline, callBack, callBackError){ // ...
- JS中的闭包 详细解析大全(面试避必考题)
JS中闭包的介绍 闭包的概念 闭包就是能够读取其他函数内部变量的函数. 一.变量的作用域 要理解闭包,首先必须理解Javascript特殊的变量作用域. 变量的作用域无非就是两种:全局变量和局部变 ...
- Nginx添加Lua扩展模块
Nginx添加Lua扩展模块 编译安装LuaJIT wget http://luajit.org/download/LuaJIT-2.0.4.tar.gz tar xf LuaJIT-.tar.gz ...
- Java连载3-编译与运行阶段详解&JRE,JDK,JVM关系
·一. 1.JDK下载地址:https://www.oracle.com/technetwork/java/javase/downloads/jdk12-downloads-5295953.html ...
- 如何判断/检查一个集合(List<string>)中是否有重复的元素
问题描述 在.NET/C#应用程序编程开发中,如何判断一个字符串集合List<string>中是否有重复的元素? 假如有如下的List<string>集合: var lstNa ...
- MYSQL事务之Yii2.0商户提现
我是一个半路出家的PHP程序员,到目前为止,不算在培训班学习的时间,已经写代码整整两年了.可能由于工作业务的原因,在这两年中我没有用到过MySQL事务.就在昨天有个关于支付宝转账的业务不得不使用MyS ...
- Python之matplotlib库学习:实现数据可视化
1. 安装和文档 pip install matplotlib 官方文档 为了方便显示图像,还使用了ipython qtconsole方便显示.具体怎么弄网上搜一下就很多教程了. pyplot模块是提 ...
- 数据结构&算法的引言+时间复杂度
一.什么是计算机科学? 首先明确的一点就是计算机科学不仅仅是对计算机的研究,虽然计算机在科学发展的过程中发挥了重大的作用,但是它只是一个工具,一个没有灵魂的工具而已.所谓的计算机科学实际上是对问题.解 ...