Atitit 马尔可夫过程(Markov process) hmm隐马尔科夫。 马尔可夫链,的原理attilax总结

1. 马尔可夫过程1

1.1. 马尔科夫的应用 生成一篇“看起来像文章的随机文本”。1

2. 隐马尔科夫过程1

3. 隐马模型基本要素及基本三问题2

4. 维特比算法2

5. 应用 HMM一开始是在信息论中应用的,后来才被应用到自然语言处理还有其他图像识别等各个2

6. 扩展数学之美系列十九 -- 马尔可夫链的扩展 贝叶斯网络 (Bayesian Networks)2

6.1. 马尔可夫链 (MarkovChain), 它描述了一种状态序列,其每个状态值取决于前面有限个状态。3

6.2. 上述的有向图看 成一个网络,它就是贝叶斯网络3

6.3. 参考资料4

1. 马尔可夫过程

编辑

马尔可夫过程(Markov process)是一类随机过程。它的原始模型马尔可夫链,由俄国数学家A.A.马尔可夫于1907年提出。该过程具有如下特性:在已知目前状态 (现在)的条件下,它未来的演变 (将来)不依赖于它以往的演变 ( 过去 ) 。 例如森林中动物头数的变化构成——马尔可夫过程 。在现实世界中,有很多过程都是马尔可夫过程,如液体中微粒所作的布朗运动、传染病受感染的人数、车站的候车人数等,都可视为马尔可夫过程

1.1. 马尔科夫的应用 生成一篇“看起来像文章的随机文本”。

先稍稍介绍下马尔可夫链,简单地说就是输入一篇文章(其实是单词序列),建立前缀表后缀表,然后根据前缀随机选择后缀,如此迭代,生成一篇“看起来像文章的随机文本”。当然这只是马尔可夫链的一个应用,不过也算挺典型的。我曾经在开发一些应用的时候用类似的程序来生成测试数据。

2. 隐马尔科夫过程

与马尔科夫相比,隐马尔科夫模型则是双重随机过程,不仅状态转移之间是个随机事件,状态和输出之间也是一个随机过程,如下图所示:

3. 隐马模型基本要素及基本三问题

综上所述,我们可以得到隐马尔科夫的基本要素,即一个五元组{S,N,A,B,PI};

S:隐藏状态集合;

N:观察状态集合;

A:隐藏状态间的转移概率矩阵;

B:输出矩阵(即隐藏状态到输出状态的概率);

PI:初始概率分布(隐藏状态的初始概率分布);

其中,A,B,PI称为隐马尔科夫的参数,用X表示。

4. 维特比算法

现在,HMM的第一个基本问题解决了,下面开始解决第二个问题,第二个问题又称为解码问题,同样的,暴力算法是计算所有可能性的概率,然后找出拥有最大概率值的隐藏状态序列。与问题一的暴力解决方案类似,复杂度为O(NT)。

那应该用什么方案呢?

毫无疑问,还是动态规划啊!

5. 应用 HMM一开始是在信息论中应用的,后来才被应用到自然语言处理还有其他图像识别等各个

说了这么多,HMM到底有什么应用呢?

HMM一开始是在信息论中应用的,后来才被应用到自然语言处理还有其他图像识别等各个方面。下面举两个例子说明他的应用,一个是输入法的整句解码,一个是语音识别。有图为证:

输入法把拼音看做是观察状态,需要得到的汉字为隐藏状态,这样,输入法的整句解码就变成了维特比解码,其转移概率即是二元语言模型,其输出概率即是多音字对应不同拼音的概率。

将上图中的拼音换成语音,就成了语音识别问题,转移概率仍然是二元语言模型,其输出概率则是语音模型,即语音和汉字的对应模型。

6. 扩展数学之美系列十九 -- 马尔可夫链的扩展 贝叶斯网络 (Bayesian Networks)

6.1. 马尔可夫链 (MarkovChain), 它描述了一种状态序列,其每个状态值取决于前面有限个状态。

这种模型,对很多实际问题来讲是一种很粗略的简化。在现实生活中,很多事物相互的关系并不能用 一条链来串起来。它们之间的关系可能是交叉的、错综复杂的。比如在下图中可以看到,心血管疾病和它的成因之间的关系是错综复杂的。显然无法用一个链来表 示。

6.2. 上述的有向图看 成一个网络,它就是贝叶斯网络

。其中每个圆圈表示一个状态。状态之间的连线表示它们的因果关系。比如从心血管疾病出发到吸烟的弧线表示心血管疾病可能和吸 烟有关。当然,这些关系可以有一个量化的可信度 (belief),用一个概率描述。我们可以通过这样一张网络估计出一个人的心血管疾病的可能性。在网络中每个节点概率的计算,可以用贝叶斯公式来进行, 贝叶斯网络因此而得名。由于网络的每个弧有一个可信度,贝叶斯网络也被称作信念网络 (belief networks)。

和马尔可夫链类似,贝叶斯网络中的每个状态值取决于前面有限个状态。不同的是,贝叶斯网络比马尔可夫链灵活,它不受马尔可夫链的链状结构的约束,因此可以更准确地描述事件之间的相关性。可以讲,马尔可夫链是贝叶斯网络的特例,而贝叶斯网络是马尔可夫链的推广。

6.3. 参考资料

隐马尔科夫模型详解 - - 博客频道 - CSDN.NET.html

GMM-HMM语音识别模型 原理篇 - Rachel Zhang的专栏 - 博客频道 - CSDN.NET.html

(2 条消息) 如何用简单易懂的例子解释隐马尔可夫模型? - 知乎.html

数学之美系列十九 -- 马尔可夫链的扩展 贝叶斯网络 (Bayesian Networks) - Kevin Yang - 博客园.html

作者:: 绰号:老哇的爪子 ( 全名::Attilax Akbar Al Rapanui 阿提拉克斯 阿克巴 阿尔 拉帕努伊 )

汉字名:艾提拉(艾龙),   EMAIL:1466519819@qq.com

转载请注明来源:attilax的专栏   http://www.cnblogs.com/attilax/

--Atiend

Atitit 马尔可夫过程(Markov process) hmm隐马尔科夫。 马尔可夫链,的原理attilax总结的更多相关文章

  1. HMM隐马尔科夫算法(Hidden Markov Algorithm)初探

    1. HMM背景 0x1:概率模型 - 用概率分布的方式抽象事物的规律 机器学习最重要的任务,是根据一些已观察到的证据(例如训练样本)来对感兴趣的未知变量(例如类别标记)进行估计和推测. 概率模型(p ...

  2. 自然语言处理(1)-HMM隐马尔科夫模型基础概念(一)

    隐马尔科夫模型HMM 序言 文本序列标注是自然语言处理中非常重要的一环,我先接触到的是CRF(条件随机场模型)用于解决相关问题,因此希望能够对CRF有一个全面的理解,但是由于在学习过程中发现一个算法像 ...

  3. HMM隐马尔科夫模型

    这是一个非常重要的模型,凡是学统计学.机器学习.数据挖掘的人都应该彻底搞懂. python包: hmmlearn 0.2.0 https://github.com/hmmlearn/hmmlearn ...

  4. HMM 隐马尔科夫 Python 代码

    import numpy as np # -*- codeing:utf-8 -*- __author__ = 'youfei' # 隐状态 hidden_state = ['sunny', 'rai ...

  5. HMM 隐马尔科夫模型

    参考如下博客: http://www.52nlp.cn/itenyh%E7%89%88-%E7%94%A8hmm%E5%81%9A%E4%B8%AD%E6%96%87%E5%88%86%E8%AF%8 ...

  6. 隐马尔科夫模型 HMM(Hidden Markov Model)

    本科阶段学了三四遍的HMM,机器学习课,自然语言处理课,中文信息处理课:如今学研究生的自然语言处理,又碰见了这个老熟人: 虽多次碰到,但总觉得一知半解,对其了解不够全面,借着这次的机会,我想要直接搞定 ...

  7. 机器学习中的隐马尔科夫模型(HMM)详解

    机器学习中的隐马尔科夫模型(HMM)详解 在之前介绍贝叶斯网络的博文中,我们已经讨论过概率图模型(PGM)的概念了.Russell等在文献[1]中指出:"在统计学中,图模型这个术语指包含贝叶 ...

  8. HMM基本原理及其实现(隐马尔科夫模型)

    HMM(隐马尔科夫模型)基本原理及其实现 HMM基本原理 Markov链:如果一个过程的“将来”仅依赖“现在”而不依赖“过去”,则此过程具有马尔可夫性,或称此过程为马尔可夫过程.马尔可夫链是时间和状态 ...

  9. 隐马尔科夫模型HMM学习最佳范例

    谷歌路过这个专门介绍HMM及其相关算法的主页:http://rrurl.cn/vAgKhh 里面图文并茂动感十足,写得通俗易懂,可以说是介绍HMM很好的范例了.一个名为52nlp的博主(google ...

随机推荐

  1. Qt 如何判断文件是不是一个目录

    做个文件管理系统的时候碰到的question,下面来讲解下方法,因为在网上都没找到,就只能翻官方文档相关信息结果找到isFile(),isDir(); 因为是文件管理系统,那么肯定现先获取到它的路径以 ...

  2. Windows 终端服务器授权 激活

      一.激活2003终端授权服务器 首先确认是否安装windows组件 添加删除程序——添加删除windows组件 终端服务器的安装就不介绍了,下面说一下激活授权服务器. 1)点击”开始”->” ...

  3. Android 时间维护服务 TimeService(针对于特殊定制设备)

    此方法针对于无法自动获取网络时间的特殊设备,正常 Android 设备直接调用 System.currentTimeMillis(); 方法获取当前时间即可. TimeService 集成于 Serv ...

  4. 一些比较常用的Linux命令

    我有一些是我是参考别人的,忘记是谁了,在这里要感谢一下ta. #命令格式就是就是由命令+空格+一些命令用法的选项(可以选择多个用法)+空格+/+目录名或者文件名,有些是直接打命令就可以了,比如ls - ...

  5. Win7 64位 VS2013环境编译Squirrel 3.0.7

    Squirrel是一个类似Lua,但是更面向对象的脚本语言. 国内这个介绍很少,环境配置更是没有任何文章提到,花了点时间搞定了,备忘记录下过程. 首先是下载,写本文时Squirrel最新版本为3.0. ...

  6. 浅谈城市规划在移动GIS方面的应用发展

    1.概述 城市建设进程加快,城市规划管理工作日趋繁重,各种来源的数据产生各种层出不穷的问题,严重影响城市规划时的准确性,为此全面合理的掌握好各方面的城市规划资料才能做出更加科学的决策.移动端的兴起为规 ...

  7. ANSI C 所有的转义字符

    \a 响铃符 \b 回退符 \f 换页符 \n 换行符 \r 回车符 \t 横向制表符 \v 纵向制表符 \\ 反斜杠 \? 问号 \' 单引号 \" 双引号 \000 八进制数 \xhh ...

  8. C# 以附加文件方式连接SQL Server数据库文件

    string str = @"data source=.\SQLEXPRESS;Integrated Security=SSPI;AttachDBFileName=z:\ttt.mdf;Us ...

  9. P1905生活大爆炸版 石头剪刀布

      P1905生活大爆炸版 石头剪刀布 描述 石头剪刀布是常见的猜拳游戏:石头胜剪刀,剪刀胜布,布胜石头.如果两个人出拳一 样,则不分胜负.在<生活大爆炸>第二季第 8 集中出现了一种石头 ...

  10. XAF Spreadsheet property Editor

    https://www.devexpress.com/Support/Center/Question/Details/T371232