paper 123: SVM如何避免过拟合
过拟合(Overfitting)表现为在训练数据上模型的预测很准,在未知数据上预测很差。过拟合主要是因为训练数据中的异常点,这些点严重偏离正常位置。我们知道,决定SVM最优分类超平面的恰恰是那些占少数的支持向量,如果支持向量中碰巧存在异常点,那么我们傻傻地让SVM去拟合这样的数据,最后的超平面就不是最优的。
如图1所示,深红色线表示我们希望训练得到的最优分类超平面,黑色虚线表示由于过拟合得到的较差的分类面。这是由于蓝色数据中有一个异常点,即图中的那个黑圈蓝点,使得我们的SVM去将就配合它,导致最后得到的分类面(粗黑色虚线)不尽如人意。从间隔可以看出,黑色虚线两边的间隔要比红色线两边的间隔要狭窄,也就是黑色虚线的分类效果比较差。

图1 异常点导致SVM过拟合
解决过拟合的办法是为SVM引入了松弛变量ξ(slack variable),将SVM公式的约束条件改为:
(3)
从图2可以看到,引入松弛变量使SVM能够容忍异常点的存在。为什么?因为引入松弛变量后,所有点到超平面的距离约束不需要大于等于1了,而是大于0.8就行了(如果ξ=0.2的话),那么异常点就可以不是支持向量了,它就作为一个普通的点存在,我们的支持向量和超平面都不会受到它的影响。

图 2 松弛变量的作用
我们知道,事物都有两面性,对异常点太容忍会导致任意超平面都可以是“最优”超平面,SVM就失去意义了。因此SVM公示中的目标函数也需要相应修改,我们加上松弛变量的平方和,并求最小值。这样就达到一个平衡:既希望松弛变量存在以解决异常点问题,又不希望松弛变量太大导致分类解决太差。

paper 123: SVM如何避免过拟合的更多相关文章
- 关于过拟合、局部最小值、以及Poor Generalization的思考
Poor Generalization 这可能是实际中遇到的最多问题. 比如FC网络为什么效果比CNN差那么多啊,是不是陷入局部最小值啊?是不是过拟合啊?是不是欠拟合啊? 在操场跑步的时候,又从SVM ...
- 实战--利用SVM对基因表达标本是否癌变的预测
利用支持向量机对基因表达标本是否癌变的预测 As we mentioned earlier, gene expression analysis has a wide variety of applic ...
- SVM-支持向量机(一)线性SVM分类
SVM-支持向量机 SVM(Support Vector Machine)-支持向量机,是一个功能非常强大的机器学习模型,可以处理线性与非线性的分类.回归,甚至是异常检测.它也是机器学习中非常热门的算 ...
- Python机器学习笔记 异常点检测算法——Isolation Forest
Isolation,意为孤立/隔离,是名词,其动词为isolate,forest是森林,合起来就是“孤立森林”了,也有叫“独异森林”,好像并没有统一的中文叫法.可能大家都习惯用其英文的名字isolat ...
- [转]Python机器学习笔记 异常点检测算法——Isolation Forest
Isolation,意为孤立/隔离,是名词,其动词为isolate,forest是森林,合起来就是“孤立森林”了,也有叫“独异森林”,好像并没有统一的中文叫法.可能大家都习惯用其英文的名字isolat ...
- ml基本问题
作者:NgShawn 链接:https://www.nowcoder.com/discuss/33737?type=2&order=3&pos=19&page=1 来源:牛客网 ...
- 论文翻译——Fast-R-CNN(端到端开篇, End to end)
快速的区域卷积网络方法(Fast R-CNN) 论文地址:https://arxiv.org/abs/1504.08083 摘要: 本文提出一种基于快速的区域卷积网络方法(Fast R-CNN) ...
- 深度学习论文翻译解析(十二):Fast R-CNN
论文标题:Fast R-CNN 论文作者:Ross Girshick 论文地址:https://www.cv-foundation.org/openaccess/content_iccv_2015/p ...
- paper 25 :SVM支持向量机是什么意思?
转载来源:https://www.zhihu.com/question/21094489 作者:余洋链接:https://www.zhihu.com/question/21094489/answer/ ...
随机推荐
- Dijkstra算法初步 - 迷宫问题
你来到一个迷宫前.该迷宫由若干个房间组成,每个房间都有一个得分,第一次进入这个房间,你就可以得到这个分数.还有若干双向道路连结这些房间,你沿着这些道路从一个房间走到另外一个房间需要一些时间.游戏规定了 ...
- Spark RDD 多文件输入
1.将多个文本文件读入一个RDD中 SparkConf conf=new SparkConf() .setMaster("local") .setAppName("sav ...
- compass General 常用api学习[Sass和compass学习笔记]
compass 中一些常用api 包括一些浏览器hack @import "compass/utilities/general" Clearfix Clearfix 是用来清除浮动 ...
- shell 套用expect
先用if 判断expect有没有安装 没有就yum install expect #!/bin/bash passwd='123456' /usr/bin/expect <<-EOF se ...
- WPF整理--动态绑定到Logical Resource
“What happens if we replace aspecific resource? Would that be reflected in all objects using the res ...
- gdb
● 要用gdb调试,在ggc编译时,需要家参数-g: gcc -g test.c - test ● 设置断点: gdb test b 63 if i==10 63是断点坐在的行号,用list命令列举出 ...
- Canvas 知识体系简单总结
Canvas 知识体系简单总结 标签(空格分隔): HTML5 Canvas 本文原创,如需转载,请注明出处 前言 知识点零零散散,一个上午整理了一下,内容不多,方便记忆. 本文不是教程,如需教程移步 ...
- 启动Hive时出现的问题
Caused by: org.apache.hadoop.hive.ql.metadata.HiveException: java.lang.RuntimeException: Unable to i ...
- 接口测试之基于LoadRunner的一个简单示例
这几天一直在捣鼓接口测试,以下总结一下: 1.什么是接口测试:接口是指系统模块与模块之间或者系统与系统之间进行交互,一般我们用的多的是HTTP协议的接口.WebService协议的接口.还有RPC(R ...
- 源码阅读 etherum-block.py
def calc_difficulty(parent, timestamp): config = parent.config offset = parent.difficulty // config[ ...