A group of friends went on holiday and sometimes lent each other money. For example, Alice paid for Bill's lunch for $10. Then later Chris gave Alice $5 for a taxi ride. We can model each transaction as a tuple (x, y, z) which means person x gave person y $z. Assuming Alice, Bill, and Chris are person 0, 1, and 2 respectively (0, 1, 2 are the person's ID), the transactions can be represented as [[0, 1, 10], [2, 0, 5]].

Given a list of transactions between a group of people, return the minimum number of transactions required to settle the debt.

Note:

A transaction will be given as a tuple (x, y, z). Note that x ≠ y and z > 0.
Person's IDs may not be linear, e.g. we could have the persons 0, 1, 2 or we could also have the persons 0, 2, 6.
Example 1:

Input:
[[0,1,10], [2,0,5]]

Output:
2

Explanation:
Person #0 gave person #1 $10.
Person #2 gave person #0 $5.

Two transactions are needed. One way to settle the debt is person #1 pays person #0 and #2 $5 each.
Example 2:

Input:
[[0,1,10], [1,0,1], [1,2,5], [2,0,5]]

Output:
1

Explanation:
Person #0 gave person #1 $10.
Person #1 gave person #0 $1.
Person #1 gave person #2 $5.
Person #2 gave person #0 $5.

Therefore, person #1 only need to give person #0 $4, and all debt is settled.
Show Company Tags

Backtracking: time complexity O(N!)

Use HashMap to store the initial debts of each person, negative means the person sends money to others, positive means the person gets money from others.

now if the map value is 0, which means the person is all set, free of debts.

Only consider those people with debts(either positive or negative)

store them in an array, use backtracking and greedy to clear each person's debts from 1st person till last one.

How to clear one person's debt? find a person 2 in the following array that has opposite sign(+->-  or - -> +), and clear person1's whole debt with person2 only.

Here's the trick: example: [7, -6, -1], one obvious optimal solution is person1 pay $6 to person2, and pay $1 to person3. Notice that this optimal solution is equivalent to another solution:

person1 pay $7 to person2, and person2 pay $1 to person3. So when doing DFS, everytime we only consider clearing person1's debt wholly with another 1 person, we don't need to consider clearing with other more people, cause clearing with 1 person is already guaranteed to be optimal.

This problem still has some debates in discussion, will check later

 public class Solution {
     int res = Integer.MAX_VALUE;
     public int minTransfers(int[][] transactions) {
         HashMap<Integer, Integer> map = new HashMap<Integer, Integer>();
         for (int[] transaction : transactions) {
             map.put(transaction[0], map.getOrDefault(transaction[0], 0)-transaction[2]);
             map.put(transaction[1], map.getOrDefault(transaction[1], 0)+transaction[2]);
         }
         ArrayList<Integer> depts = new ArrayList<Integer>();
         for (int dept : map.values()) {
             if (dept != 0) depts.add(dept);
         }
         helper(depts, 0, 0);
         return res;
     }

     public void helper(ArrayList<Integer> depts, int start, int count) {
         while (start<depts.size() && depts.get(start)==0) start++;
         if (start == depts.size()) {
             res = Math.min(res, count);
             return;
         }
         for (int i=start+1; i<depts.size(); i++) {
             if (depts.get(start)<0&&depts.get(i)>0 || depts.get(start)>0&&depts.get(i)<0) {
                 depts.set(i, depts.get(i)+depts.get(start));
                 //int store = depts.get(start);
                 //depts.set(start, 0);
                 helper(depts, start+1, count+1);
                 //depts.set(start, store);
                 depts.set(i, depts.get(i)-depts.get(start));
             }
         }
     }
 }

Leetcode: Optimal Account Balancing的更多相关文章

  1. [LeetCode] Optimal Account Balancing 最优账户平衡

    A group of friends went on holiday and sometimes lent each other money. For example, Alice paid for ...

  2. [LeetCode] 465. Optimal Account Balancing 最优账户平衡

    A group of friends went on holiday and sometimes lent each other money. For example, Alice paid for ...

  3. LC 465. Optimal Account Balancing 【lock,hard】

    A group of friends went on holiday and sometimes lent each other money. For example, Alice paid for ...

  4. [LeetCode] Optimal Division 最优分隔

    Given a list of positive integers, the adjacent integers will perform the float division. For exampl ...

  5. LeetCode Optimal Division

    原题链接在这里:https://leetcode.com/problems/optimal-division/description/ 题目: Given a list of positive int ...

  6. LeetCode All in One 题目讲解汇总(持续更新中...)

    终于将LeetCode的免费题刷完了,真是漫长的第一遍啊,估计很多题都忘的差不多了,这次开个题目汇总贴,并附上每道题目的解题连接,方便之后查阅吧~ 477 Total Hamming Distance ...

  7. LeetCode All in One题解汇总(持续更新中...)

    突然很想刷刷题,LeetCode是一个不错的选择,忽略了输入输出,更好的突出了算法,省去了不少时间. dalao们发现了任何错误,或是代码无法通过,或是有更好的解法,或是有任何疑问和建议的话,可以在对 ...

  8. All LeetCode Questions List 题目汇总

    All LeetCode Questions List(Part of Answers, still updating) 题目汇总及部分答案(持续更新中) Leetcode problems clas ...

  9. Leetcode problems classified by company 题目按公司分类(Last updated: October 2, 2017)

    All LeetCode Questions List 题目汇总 Sorted by frequency of problems that appear in real interviews. Las ...

随机推荐

  1. CentOS7中DHCP配置

    因为需要网络引导系统的安装,所以需要安装和配置DHCP服务器.DHCP(Dynamic Host Configuration Protocol) 动态主机配置协议,它提供了一种动态指定IP地址和配置参 ...

  2. ArcGIS 10与ArcEngine 10安装及破解

    1 2 3 4 5 分步阅读 一键约师傅 百度师傅高质屏和好师傅,拯救你的碎屏机 百度经验:jingyan.baidu.com 现在常见的破解方法在下面的地址中已经详细附图说明了,但是这种破解方法,想 ...

  3. WPF 四种样式

    1.内联样式<TextBlock FontSize="20" Foreground="Blue">好啊</TextBlock> 2.页面 ...

  4. asp.net三层架构详解

    一.数据库 /*==============================================================*/ /* DBMS name:      Microsof ...

  5. 2016 CCPC长春重现赛

    1.2016中国大学生程序设计竞赛(长春)-重现赛 2.总结:会做的太少,应变能力也不行,或者说猜题目的能力不行 02  水 04  HDU 5914  Triangle 1.题意:1~n,n个数,问 ...

  6. MongoDB使用小结:一些常用操作分享

    本文整理了一年多以来我常用的MongoDB操作,涉及mongo-shell.pymongo,既有运维层面也有应用层面,内容有浅有深,这也就是我从零到熟练的历程. MongoDB的使用之前也分享过一篇, ...

  7. Android 开发项目笔记2 自建View满足特殊要求

    写java文件组成特殊的View,然后在xml文件中通过 包名.类名 调用. 1.padding 是指的组件内部的填充区域,不是指组件与parent之间的区域.操控后者间距后者使用margin 2.使 ...

  8. java读取项目中文件路径及乱码解决

    this.getClass.getResource(path).getPath(); 如果出现中文乱码,可以使用java.net.URLDecoder.decode方法进行处理 如:URLDecode ...

  9. 打包ipa出现问题记录

    1.打包ipa事,Archive出现问题 解决方法:Xcode->系统偏好设置->Accounts->选中正在使用的账户->view details->download ...

  10. 神经网络之Hebb学习规则