没有系统学过数学优化,但是机器学习中又常用到这些工具和技巧,机器学习中最常见的优化当属凸优化了,这些可以参考Ng的教学资料:http://cs229.stanford.edu/section/cs229-cvxopt.pdf,从中我们可以大致了解到一些凸优化的概念,比如凸集,凸函数,凸优化问题,线性规划,二次规划,二次约束二次规划,半正定规划等,从而对凸优化问题有个初步的认识。以下是几个重要相关概念的笔记。

  凸集的定义为:

  

  其几何意义表示为:如果集合C中任意2个元素连线上的点也在集合C中,则C为凸集。其示意图如下所示:

  

  常见的凸集有:

  n维实数空间;一些范数约束形式的集合;仿射子空间;凸集的交集;n维半正定矩阵集;这些都可以通过凸集的定义去证明。

  凸函数的定义为:

  

  其几何意义表示为函数任意两点连线上的值大于对应自变量处的函数值,示意图如下:

  

  凸函数的一阶充要条件为:

  

  其中要求f一阶可微。

  二阶充要条件为:

  

  其中要求f二阶可微,表示二阶导数需大于0才是凸函数。

  常见的凸函数有:指数函数族;非负对数函数;仿射函数;二次函数;常见的范数函数;凸函数非负加权的和等。这些可以采用上面2个充要条件或者定义去证明。

  凸优化问题(OPT)的定义为:

  

  即要求目标函数是凸函数,变量所属集合是凸集合的优化问题。或者目标函数是凸函数,变量的约束函数是凸函数(不等式约束时),或者是仿射函数(等式约束时)。

  对于凸优化问题来说,局部最优解就是全局最优解。

  常见的凸优化问题包括:

  线性规划(LP):该问题是优化下面的式子:

  

  其中那个不常见的奇怪符号表示按元素小于等于,后面出现类似符号可以类似理解。

  二次规划(QP):该问题是优化下面的式子:

  

  二次约束的二次规划(QCQP):该问题是优化下面的式子:

  

  半正定规划(SDP):该问题是优化下面的式子:

  

  按照文章说SDP在机器学习领域应用很广,最近很流行,不过我好像没太接触到过。

  参考资料:

http://cs229.stanford.edu/section/cs229-cvxopt.pdf

机器学习&数据挖掘笔记_15(关于凸优化的一些简单概念)的更多相关文章

  1. 机器学习&数据挖掘笔记(常见面试之机器学习算法思想简单梳理)

    机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理) 作者:tornadomeet 出处:http://www.cnblogs.com/tornadomeet 前言: 找工作时( ...

  2. [转]机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理)

    机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理) 转自http://www.cnblogs.com/tornadomeet/p/3395593.html 前言: 找工作时(I ...

  3. 机器学习&数据挖掘笔记_14(GMM-HMM语音识别简单理解)

    为了对GMM-HMM在语音识别上的应用有个宏观认识,花了些时间读了下HTK(用htk完成简单的孤立词识别)的部分源码,对该算法总算有了点大概认识,达到了预期我想要的.不得不说,网络上关于语音识别的通俗 ...

  4. 机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理)

    前言: 找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考 ...

  5. 机器学习&数据挖掘笔记_23(PGM练习七:CRF中参数的学习)

    前言: 本次实验主要任务是学习CRF模型的参数,实验例子和PGM练习3中的一样,用CRF模型来预测多张图片所组成的单词,我们知道在graph model的推理中,使用较多的是factor,而在grap ...

  6. 机器学习&数据挖掘笔记_12(对Conjugate Gradient 优化的简单理解)

    数学优化方法在机器学习算法中至关重要,本篇博客主要来简单介绍下Conjugate Gradient(共轭梯度法,以下简称CG)算法,内容是参考的文献为:An Introduction to the C ...

  7. 机器学习&数据挖掘笔记_24(PGM练习八:结构学习)

    前言: 本次实验包含了2部分:贝叶斯模型参数的学习以及贝叶斯模型结构的学习,在前面的博文PGM练习七:CRF中参数的学习 中我们已经知道怎样学习马尔科夫模型(CRF)的参数,那个实验采用的是优化方法, ...

  8. 机器学习&数据挖掘笔记_25(PGM练习九:HMM用于分类)

    前言: 本次实验是用EM来学习HMM中的参数,并用学好了的HMM对一些kinect数据进行动作分类.实验内容请参考coursera课程:Probabilistic Graphical Models 中 ...

  9. 机器学习&数据挖掘笔记_22(PGM练习六:制定决策)

    前言: 本次实验是将一些简单的决策理论和PGM推理结合,实验内容相对前面的图模型推理要简单些.决策理论采用的是influence diagrams,和常见图模型本质一样, 其中的决策节点也可以用CPD ...

随机推荐

  1. java 类反射记录

    Class的getDeclaredMethod方法是获取当前类下的所有方法,包括private修饰的,该方法不获取父类的方法. getMethod获取父类及本类下的所有public方法.

  2. Android消息队列和Looper

    1. 什么是消息队列 消息队列在android中对应MessageQueue这个类,顾名思义,消息队列中存放了大量的消息(Message) 2.什么是消息 消息(Message)代表一个行为(what ...

  3. 彻底理解ThreadLocal一

    synchronized这类线程同步的机制可以解决多线程并发问题,在这种解决方案下,多个线程访问到的,都是同一份变量的内容.为了防止在多线程访问的过程中,可能会出现的并发错误.不得不对多个线程的访问进 ...

  4. 记一次Redis和NetMQ的测试

    Redis是一个高速缓存K-V数据库,而NetMQ是ZeroMQ的C#实现版本,两者是完全不同的东西. 最近做游戏服务器的时候想到,如果选择一个组件来做服务器间通信的话,ZeroMQ绝对是一个不错的选 ...

  5. Windows10 UWP开发 - 响应式设计

      Windows10 UWP开发 - 响应式设计 本篇随笔与大家简单讨论一下在开发适配不同分辨率.宽高比的Windows10 Universal App布局时的可行方式与小技巧.经验均从实践中总结, ...

  6. Cloneable接口和Object的clone()方法

    为什么要克隆 为什么要使用克隆,这其实反映的是一个很现实的问题,假如我们有一个对象: public class SimpleObject implements Cloneable { private ...

  7. WPF 窗口自适应

    窗口自适应就是说,当主窗口缩放的时候,内部的控件位置自动的调整,而不是隐藏掉.这主要依赖于Grid布局. 1.比如这个groupbox 本身是在一个Grid的Row中的.缩放之后,左边的button不 ...

  8. [.net 面向对象编程基础] (9) 类和类的实例

    [.net 面向对象编程基础] (9) 类和类的实例 类 ,顾名思义就是分类.类别的意思.我们要面向对象编程,就需要对不同的事物进行分类.类可以说是.net面向对象的核心. 类:就是具有相同的属性和功 ...

  9. 一天一小段js代码(no.2)

    (一)可以用下面js代码来检测弹出窗口是否被屏蔽: var blocked = false ; try { /*window.open()方法接受4个参数window.open(要加载的url,窗口目 ...

  10. 知方可补不足~UPDLOCK更新锁的使用

    回到目录 对于高并发的场合下,使用UPDLOCK可以有效的控制并发更新的问题,即当一个线程在进行with(UPDLOCK)并进行update时,另一个线程将被阻塞,它会等第一个线程更新结束后,才可以进 ...