没有系统学过数学优化,但是机器学习中又常用到这些工具和技巧,机器学习中最常见的优化当属凸优化了,这些可以参考Ng的教学资料:http://cs229.stanford.edu/section/cs229-cvxopt.pdf,从中我们可以大致了解到一些凸优化的概念,比如凸集,凸函数,凸优化问题,线性规划,二次规划,二次约束二次规划,半正定规划等,从而对凸优化问题有个初步的认识。以下是几个重要相关概念的笔记。

  凸集的定义为:

  

  其几何意义表示为:如果集合C中任意2个元素连线上的点也在集合C中,则C为凸集。其示意图如下所示:

  

  常见的凸集有:

  n维实数空间;一些范数约束形式的集合;仿射子空间;凸集的交集;n维半正定矩阵集;这些都可以通过凸集的定义去证明。

  凸函数的定义为:

  

  其几何意义表示为函数任意两点连线上的值大于对应自变量处的函数值,示意图如下:

  

  凸函数的一阶充要条件为:

  

  其中要求f一阶可微。

  二阶充要条件为:

  

  其中要求f二阶可微,表示二阶导数需大于0才是凸函数。

  常见的凸函数有:指数函数族;非负对数函数;仿射函数;二次函数;常见的范数函数;凸函数非负加权的和等。这些可以采用上面2个充要条件或者定义去证明。

  凸优化问题(OPT)的定义为:

  

  即要求目标函数是凸函数,变量所属集合是凸集合的优化问题。或者目标函数是凸函数,变量的约束函数是凸函数(不等式约束时),或者是仿射函数(等式约束时)。

  对于凸优化问题来说,局部最优解就是全局最优解。

  常见的凸优化问题包括:

  线性规划(LP):该问题是优化下面的式子:

  

  其中那个不常见的奇怪符号表示按元素小于等于,后面出现类似符号可以类似理解。

  二次规划(QP):该问题是优化下面的式子:

  

  二次约束的二次规划(QCQP):该问题是优化下面的式子:

  

  半正定规划(SDP):该问题是优化下面的式子:

  

  按照文章说SDP在机器学习领域应用很广,最近很流行,不过我好像没太接触到过。

  参考资料:

http://cs229.stanford.edu/section/cs229-cvxopt.pdf

机器学习&数据挖掘笔记_15(关于凸优化的一些简单概念)的更多相关文章

  1. 机器学习&数据挖掘笔记(常见面试之机器学习算法思想简单梳理)

    机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理) 作者:tornadomeet 出处:http://www.cnblogs.com/tornadomeet 前言: 找工作时( ...

  2. [转]机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理)

    机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理) 转自http://www.cnblogs.com/tornadomeet/p/3395593.html 前言: 找工作时(I ...

  3. 机器学习&数据挖掘笔记_14(GMM-HMM语音识别简单理解)

    为了对GMM-HMM在语音识别上的应用有个宏观认识,花了些时间读了下HTK(用htk完成简单的孤立词识别)的部分源码,对该算法总算有了点大概认识,达到了预期我想要的.不得不说,网络上关于语音识别的通俗 ...

  4. 机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理)

    前言: 找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考 ...

  5. 机器学习&数据挖掘笔记_23(PGM练习七:CRF中参数的学习)

    前言: 本次实验主要任务是学习CRF模型的参数,实验例子和PGM练习3中的一样,用CRF模型来预测多张图片所组成的单词,我们知道在graph model的推理中,使用较多的是factor,而在grap ...

  6. 机器学习&数据挖掘笔记_12(对Conjugate Gradient 优化的简单理解)

    数学优化方法在机器学习算法中至关重要,本篇博客主要来简单介绍下Conjugate Gradient(共轭梯度法,以下简称CG)算法,内容是参考的文献为:An Introduction to the C ...

  7. 机器学习&数据挖掘笔记_24(PGM练习八:结构学习)

    前言: 本次实验包含了2部分:贝叶斯模型参数的学习以及贝叶斯模型结构的学习,在前面的博文PGM练习七:CRF中参数的学习 中我们已经知道怎样学习马尔科夫模型(CRF)的参数,那个实验采用的是优化方法, ...

  8. 机器学习&数据挖掘笔记_25(PGM练习九:HMM用于分类)

    前言: 本次实验是用EM来学习HMM中的参数,并用学好了的HMM对一些kinect数据进行动作分类.实验内容请参考coursera课程:Probabilistic Graphical Models 中 ...

  9. 机器学习&数据挖掘笔记_22(PGM练习六:制定决策)

    前言: 本次实验是将一些简单的决策理论和PGM推理结合,实验内容相对前面的图模型推理要简单些.决策理论采用的是influence diagrams,和常见图模型本质一样, 其中的决策节点也可以用CPD ...

随机推荐

  1. cas+shiro统一注销原理解析

    1,客户端发送一个注销请求到cas server,跟踪casorg.jasig.cas.CentralAuthenticationServiceImpl类的destroyTicketGrantingT ...

  2. UIWebView和Js交互

    在日常的ios项目开发中,我们经常会在原生应用中嵌入web页面,通常我们只是进行一个展示,没有其它的一些功能.但是也有一些项目中需要web页面中的html和native进行交互.但是ios sdk 并 ...

  3. Paypal支付接口

    先吐槽一下,国外的创业环境真的远远好于国内的创业环境. vps便宜,网络质量好,没有各种政策监管,各种便捷的金融工具.这其中就包括paypal. Paypal 支持两种付款方式,信用卡+paypal注 ...

  4. windows配置php开发环境

    1.安装xampp. xampp集成了php.prel.mysql.apache等网站工具,安装超简单,本身也超级好用.点击下载xampp 2.讲xmapp中的php配置到环境变量 比如我的xampp ...

  5. [ASE]项目介绍及项目跟进——TANK BATTLE·INFINITE

    童年的记忆,大概是每周末和小伙伴们围坐在电视机前,在20来寸的电视机屏幕里守卫着这个至今都不知道是什么的白色大鸟. 当年被打爆的坦克数量估计也能绕地球个三两圈了吧. 十几年过去了,游戏从2D-3D,画 ...

  6. mongoDB研究笔记:分片集群部署

    前面几篇文章的分析复制集解决了数据库的备份与自动故障转移,但是围绕数据库的业务中当前还有两个方面的问题变得越来越重要.一是海量数据如何存储?二是如何高效的读写海量数据?尽管复制集也可以实现读写分析,如 ...

  7. Yii2中的环境配置

    默认的Debug配置 在入口文件中 defined ( 'YII_DEBUG' ) or define ( 'YII_DEBUG', true ); defined ( 'YII_ENV' ) or ...

  8. RCP: JDT 根据org.eclipse.jdt.core.IJavaElement对象获取org.eclipse.jdt.core.dom.ASTNode对象

    JDT中有两套Java文件模型映射. 其核心类\接口分别为: org.eclipse.jdt.core.IJavaElement和org.eclipse.jdt.core.dom.ASTNode IJ ...

  9. nw.js FrameLess Window下的窗口拖拽与窗口大小控制

    nw.js FrameLess Window下的窗口拖拽与窗口大小控制 很多时候,我们觉得系统的Frame框很难看,于是想自定义. 自定义Frame的第一步是在package.config文件中将fr ...

  10. Winform启动隐藏,WebBrowser交互JS

    一.启动隐藏 Winform比较奇怪,Load的时候设置Visiable=false,无效.webBrowser_DocumentCompleted之后调用hide隐藏了窗体,但是在notifyIco ...