【转载】Chaotic Time-Series Prediction
原文地址:https://cn.mathworks.com/help/fuzzy/examples/chaotic-time-series-prediction.html?requestedDomain=www.mathworks.com
This example shows how to do chaotic time series prediction using ANFIS.
Time Series Data
The data is generated from the Mackey-Glass time-delay differential equation which is defined by
dx(t)/dt = 0.2x(t-tau)/(1+x(t-tau)^10) - 0.1x(t)
When x(0) = 1.2 and tau = 17, we have a non-periodic and non-convergent time series that is very sensitive to initial conditions. (We assume x(t) = 0 when t < 0.)
load mgdata.dat
a = mgdata;
time = a(:, 1);
x_t = a(:, 2);
plot(time, x_t);
xlabel('Time (sec)','fontsize',10); ylabel('x(t)','fontsize',10);
title('Mackey-Glass Chaotic Time Series','fontsize',10);

Preprocessing the Data
Now we want to build an ANFIS that can predict x(t+6) from the past values of this time series, that is, x(t-18), x(t-12), x(t-6), and x(t). Therefore the training data format is
[x(t-18), x(t-12), x(t-6), x(t); x(t+6]
From t = 118 to 1117, we collect 1000 data pairs of the above format. The first 500 are used for training while the others are used for checking. The plot shows the segment of the time series where data pairs were extracted from. The first 100 data points are ignored to avoid the transient portion of the data.
trn_data = zeros(500, 5);
chk_data = zeros(500, 5); % prepare training data
trn_data(:, 1) = x_t(101:600);
trn_data(:, 2) = x_t(107:606);
trn_data(:, 3) = x_t(113:612);
trn_data(:, 4) = x_t(119:618);
trn_data(:, 5) = x_t(125:624); % prepare checking data
chk_data(:, 1) = x_t(601:1100);
chk_data(:, 2) = x_t(607:1106);
chk_data(:, 3) = x_t(613:1112);
chk_data(:, 4) = x_t(619:1118);
chk_data(:, 5) = x_t(625:1124); index = 119:1118; % ts starts with t = 0
plot(time(index), x_t(index));
xlabel('Time (sec)','fontsize',10); ylabel('x(t)','fontsize',10);
title('Mackey-Glass Chaotic Time Series','fontsize',10);

Building the ANFIS Model
We use GENFIS1 to generate an initial FIS matrix from training data. The command is quite simple since default values for MF number (2) and MF type ('gbellmf') are used:
fismat = genfis1(trn_data); % The initial MFs for training are shown in the plots.
for input_index=1:4,
subplot(2,2,input_index)
[x,y]=plotmf(fismat,'input',input_index);
plot(x,y)
axis([-inf inf 0 1.2]);
xlabel(['Input ' int2str(input_index)],'fontsize',10);
end

There are 2^4 = 16 rules in the generated FIS matrix and the number of fitting parameters is 108, including 24 nonlinear parameters and 80 linear parameters. This is a proper balance between number of fitting parameters and number of training data (500). The ANFIS command looks like this:
[trn_fismat,trn_error] = anfis(trn_data, fismat,[],[],chk_data)
To save time, we will load the training results directly.
After ten epochs of training, the final MFs are shown in the plots. Note that these MFs after training do not change drastically. Obviously most of the fitting is done by the linear parameters while the nonlinear parameters are mostly for fine- tuning for further improvement.
% load training results
load mganfis % plot final MF's on x, y, z, u
for input_index=1:4,
subplot(2,2,input_index)
[x,y]=plotmf(trn_fismat,'input',input_index);
plot(x,y)
axis([-inf inf 0 1.2]);
xlabel(['Input ' int2str(input_index)],'fontsize',10);
end

Error Curves
This plot displays error curves for both training and checking data. Note that the training error is higher than the checking error. This phenomenon is not uncommon in ANFIS learning or nonlinear regression in general; it could indicate that the training process is not close to finished yet.
% error curves plot
close all;
epoch_n = 10;
plot([trn_error chk_error]);
hold on; plot([trn_error chk_error], 'o'); hold off;
xlabel('Epochs','fontsize',10);
ylabel('RMSE (Root Mean Squared Error)','fontsize',10);
title('Error Curves','fontsize',10);

Comparison
This plot shows the original time series and the one predicted by ANFIS. The difference is so tiny that it is impossible to tell one from another by eye inspection. That is why you probably see only the ANFIS prediction curve. The prediction errors must be viewed on another scale.
input = [trn_data(:, 1:4); chk_data(:, 1:4)];
anfis_output = evalfis(input, trn_fismat);
index = 125:1124;
plot(time(index), [x_t(index) anfis_output]);
xlabel('Time (sec)','fontsize',10);

Prediction Errors of ANFIS
Prediction error of ANFIS is shown here. Note that the scale is about a hundredth of the scale of the previous plot. Remember that we have only 10 epochs of training in this case; better performance is expected if we have extensive training.
diff = x_t(index)-anfis_output;
plot(time(index), diff);
xlabel('Time (sec)','fontsize',10);
title('ANFIS Prediction Errors','fontsize',10);

【转载】Chaotic Time-Series Prediction的更多相关文章
- (转)LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION
LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION Wed 21st Dec 2016 Neural Networks these days are th ...
- (zhuan) LSTM Neural Network for Time Series Prediction
LSTM Neural Network for Time Series Prediction Wed 21st Dec 2016 Neural Networks these days are the ...
- PP: A dual-stage attention-based recurrent neural network for time series prediction
Problem: time series prediction The nonlinear autoregressive exogenous model: The Nonlinear autoregr ...
- PP: Modeling extreme events in time series prediction
KDD: Knowledge Discovery and Data Mining (KDD) Insititute: 复旦大学,中科大 Problem: time series prediction; ...
- PP: Time series clustering via community detection in Networks
Improvement can be done in fulture:1. the algorithm of constructing network from distance matrix. 2. ...
- Autocorrelation in Time Series Data
Why Time Series Data Is Unique A time series is a series of data points indexed in time. The fact th ...
- Recurrent Neural Network[survey]
0.引言 我们发现传统的(如前向网络等)非循环的NN都是假设样本之间无依赖关系(至少时间和顺序上是无依赖关系),而许多学习任务却都涉及到处理序列数据,如image captioning,speech ...
- 生成模型(Generative Model)和 判别模型(Discriminative Model)
引入 监督学习的任务就是学习一个模型(或者得到一个目标函数),应用这一模型,对给定的输入预测相应的输出.这一模型的一般形式为一个决策函数Y=f(X),或者条件概率分布P(Y|X). 监督学习方法又可以 ...
- cnn,rnn,dnn
CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别? https://www.zhihu.com/question/34681168 CNN(卷积神经网络) ...
随机推荐
- oracle 数据库信息查询
/*查询当前用户表信息/ select A.column_name 字段名, A.data_type 数据类型, A.data_length 长度, A.data_precisi ...
- linux下如何使用sftp命令
sftp 是一个交互式文件传输程式.它类似于 ftp, 但它进行加密传输,比FTP有更高的安全性.下边就简单介绍一下如何远程连接主机,进行文件的上传和下载,以及一些相关操作. 举例,如远程主机的 IP ...
- 关于lwip移植到ucsos-ii平台的遇到的问题(一)
移植的步骤参照<Day_Day_Up笔记之uCOS-II_LwIP_在_STM32F107_上移植>,<uCOS平台下的LwIP移植笔记>,<嵌入式网络那些事>. ...
- Eclipse打不开,提示: An error has occurred. see the log file
解决办法 删除.metadata目录下.plugins/org.eclipse.e4.workbench即可
- JPA原理理解
从前面一篇<JPA使用入门>了解了JPA的简单使用.要想继续深入的使用JPA,可能了解一点原理对于学习JPA会比较有益处. 这里从JPA的功能来简单阐述JPA的原理. 从<初步了解J ...
- 这种代码怎么改写?以致于在下次增加CustomsType时,不需要再加 if 语句。
最近看到项目里一段代码如下: excelObject excel = new excelObject(); if (loadbill.CustomsType == 1) excel.IDownload ...
- 《Linux内核分析》实验一
陈智威,<Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 课堂学习笔记: 作业截图: 汇编代码堆栈分析: ...
- 【转】java中volatile关键字的含义
java中volatile关键字的含义 在java线程并发处理中,有一个关键字volatile的使用目前存在很大的混淆,以为使用这个关键字,在进行多线程并发处理的时候就可以万事大吉. Java语言 ...
- SVN 服务启动报错 0x8007042a
服务器环境:Windows Server 2008 R2 企业版,Visual SVNServer 2.6.5 不能签出代码,发现svn服务关闭,手动启动报错: 事件查看器: Error: no li ...
- Android 开发常用命令
1.生成keystore文件 keytool -exportcert -keystore keystore_path -list -v 2.查看APK签名 keytool -list -printce ...