【转载】Chaotic Time-Series Prediction
原文地址:https://cn.mathworks.com/help/fuzzy/examples/chaotic-time-series-prediction.html?requestedDomain=www.mathworks.com
This example shows how to do chaotic time series prediction using ANFIS.
Time Series Data
The data is generated from the Mackey-Glass time-delay differential equation which is defined by
dx(t)/dt = 0.2x(t-tau)/(1+x(t-tau)^10) - 0.1x(t)
When x(0) = 1.2 and tau = 17, we have a non-periodic and non-convergent time series that is very sensitive to initial conditions. (We assume x(t) = 0 when t < 0.)
load mgdata.dat
a = mgdata;
time = a(:, 1);
x_t = a(:, 2);
plot(time, x_t);
xlabel('Time (sec)','fontsize',10); ylabel('x(t)','fontsize',10);
title('Mackey-Glass Chaotic Time Series','fontsize',10);

Preprocessing the Data
Now we want to build an ANFIS that can predict x(t+6) from the past values of this time series, that is, x(t-18), x(t-12), x(t-6), and x(t). Therefore the training data format is
[x(t-18), x(t-12), x(t-6), x(t); x(t+6]
From t = 118 to 1117, we collect 1000 data pairs of the above format. The first 500 are used for training while the others are used for checking. The plot shows the segment of the time series where data pairs were extracted from. The first 100 data points are ignored to avoid the transient portion of the data.
trn_data = zeros(500, 5);
chk_data = zeros(500, 5); % prepare training data
trn_data(:, 1) = x_t(101:600);
trn_data(:, 2) = x_t(107:606);
trn_data(:, 3) = x_t(113:612);
trn_data(:, 4) = x_t(119:618);
trn_data(:, 5) = x_t(125:624); % prepare checking data
chk_data(:, 1) = x_t(601:1100);
chk_data(:, 2) = x_t(607:1106);
chk_data(:, 3) = x_t(613:1112);
chk_data(:, 4) = x_t(619:1118);
chk_data(:, 5) = x_t(625:1124); index = 119:1118; % ts starts with t = 0
plot(time(index), x_t(index));
xlabel('Time (sec)','fontsize',10); ylabel('x(t)','fontsize',10);
title('Mackey-Glass Chaotic Time Series','fontsize',10);

Building the ANFIS Model
We use GENFIS1 to generate an initial FIS matrix from training data. The command is quite simple since default values for MF number (2) and MF type ('gbellmf') are used:
fismat = genfis1(trn_data); % The initial MFs for training are shown in the plots.
for input_index=1:4,
subplot(2,2,input_index)
[x,y]=plotmf(fismat,'input',input_index);
plot(x,y)
axis([-inf inf 0 1.2]);
xlabel(['Input ' int2str(input_index)],'fontsize',10);
end

There are 2^4 = 16 rules in the generated FIS matrix and the number of fitting parameters is 108, including 24 nonlinear parameters and 80 linear parameters. This is a proper balance between number of fitting parameters and number of training data (500). The ANFIS command looks like this:
[trn_fismat,trn_error] = anfis(trn_data, fismat,[],[],chk_data)
To save time, we will load the training results directly.
After ten epochs of training, the final MFs are shown in the plots. Note that these MFs after training do not change drastically. Obviously most of the fitting is done by the linear parameters while the nonlinear parameters are mostly for fine- tuning for further improvement.
% load training results
load mganfis % plot final MF's on x, y, z, u
for input_index=1:4,
subplot(2,2,input_index)
[x,y]=plotmf(trn_fismat,'input',input_index);
plot(x,y)
axis([-inf inf 0 1.2]);
xlabel(['Input ' int2str(input_index)],'fontsize',10);
end

Error Curves
This plot displays error curves for both training and checking data. Note that the training error is higher than the checking error. This phenomenon is not uncommon in ANFIS learning or nonlinear regression in general; it could indicate that the training process is not close to finished yet.
% error curves plot
close all;
epoch_n = 10;
plot([trn_error chk_error]);
hold on; plot([trn_error chk_error], 'o'); hold off;
xlabel('Epochs','fontsize',10);
ylabel('RMSE (Root Mean Squared Error)','fontsize',10);
title('Error Curves','fontsize',10);

Comparison
This plot shows the original time series and the one predicted by ANFIS. The difference is so tiny that it is impossible to tell one from another by eye inspection. That is why you probably see only the ANFIS prediction curve. The prediction errors must be viewed on another scale.
input = [trn_data(:, 1:4); chk_data(:, 1:4)];
anfis_output = evalfis(input, trn_fismat);
index = 125:1124;
plot(time(index), [x_t(index) anfis_output]);
xlabel('Time (sec)','fontsize',10);

Prediction Errors of ANFIS
Prediction error of ANFIS is shown here. Note that the scale is about a hundredth of the scale of the previous plot. Remember that we have only 10 epochs of training in this case; better performance is expected if we have extensive training.
diff = x_t(index)-anfis_output;
plot(time(index), diff);
xlabel('Time (sec)','fontsize',10);
title('ANFIS Prediction Errors','fontsize',10);

【转载】Chaotic Time-Series Prediction的更多相关文章
- (转)LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION
LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION Wed 21st Dec 2016 Neural Networks these days are th ...
- (zhuan) LSTM Neural Network for Time Series Prediction
LSTM Neural Network for Time Series Prediction Wed 21st Dec 2016 Neural Networks these days are the ...
- PP: A dual-stage attention-based recurrent neural network for time series prediction
Problem: time series prediction The nonlinear autoregressive exogenous model: The Nonlinear autoregr ...
- PP: Modeling extreme events in time series prediction
KDD: Knowledge Discovery and Data Mining (KDD) Insititute: 复旦大学,中科大 Problem: time series prediction; ...
- PP: Time series clustering via community detection in Networks
Improvement can be done in fulture:1. the algorithm of constructing network from distance matrix. 2. ...
- Autocorrelation in Time Series Data
Why Time Series Data Is Unique A time series is a series of data points indexed in time. The fact th ...
- Recurrent Neural Network[survey]
0.引言 我们发现传统的(如前向网络等)非循环的NN都是假设样本之间无依赖关系(至少时间和顺序上是无依赖关系),而许多学习任务却都涉及到处理序列数据,如image captioning,speech ...
- 生成模型(Generative Model)和 判别模型(Discriminative Model)
引入 监督学习的任务就是学习一个模型(或者得到一个目标函数),应用这一模型,对给定的输入预测相应的输出.这一模型的一般形式为一个决策函数Y=f(X),或者条件概率分布P(Y|X). 监督学习方法又可以 ...
- cnn,rnn,dnn
CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别? https://www.zhihu.com/question/34681168 CNN(卷积神经网络) ...
随机推荐
- 第二篇.Bootstrap起步
第二篇Bootstrap起步 我们可以在http://getbootstrap.com下载bootstrap的文件 点击左边的download bootstrap可以下载bootstrap的css,j ...
- leetcode 日记 4sum java
整体思路同之前的一样,依然采取降低维度的方式进行 public List<List<Integer>> solution(int nums[], int target) { L ...
- Python 3.x 使用csv模块写入数据
with open(fileName,'w',newline='') as f: self.fileNames = ['timestamp','elapsedtime'] writer = csv.D ...
- 如何通过JDBC访问数据库
Java数据库连接(JDBC)用与在Java程序中实现数据库操作功能,它提供了执行SQL语句.访问各种数据库的方法,并为各种不同的数据库提供统一的操作接口,java.sql包中包含了JDBC操作数据库 ...
- sublime text 3 快捷键大全
Sublime Text 3 快捷键精华版 Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所 ...
- matlab初学之plot颜色和线型
文章出处: http://jiangshuxia.9.blog.163.com/blog/static/3487586020116711375339/ 字母 颜色 标点 ...
- sql语句的匹配
like 的通配符有两种 %(百分号):代表零个.一个或者多个字符. _(下划线):代表一个数字或者字符. 1. name以"李"开头 where name like '李%' 2 ...
- php生成html文件的多种方法介绍
我经常会在网上看到有人问怎么将整个动态的网站静态化,其实实现的方法很简单. 代码如下 复制代码 <?php//在你的开始处加入 ob_start(); ob_start(); //以下是你的代 ...
- C#多线程开发中如何更新UI界面控件内容
子线程不能修改UI线程的状态(比如文本框里面的内容). 解决的办法是写一个用来更新文本框内容的函数,然后在Worker线程里面通过BeginInvoke来利用delegate调用这个函数更新文本框. ...
- WebDriver 常见Exception处理
1. org.openqa.selenium.WebDriverException: unknown error: unhandled inspector error: {"code&quo ...